Альтернативные экологичные виды топлива для автомобилей. Использование экологически безопасных видов топлива

Специалисты разных стран ведут исследования в области применения новых видов топлива и источников энергии на автомобильных транспортах. Это связано со значительным ростом численности автотранспортных средств и все большим загрязнением окружающей среды окружающей среды.

К наиболее эффективным и перспективным видам моторного топлива следует отнести природный газ, водород, пропан-бутановую смесь, метанол и др.

Перспективное автомобильное топливо -- это любой химический источник энергии, использование которого в традиционных или разрабатываемых автомобильных двигателях позволяет в какой-то степени решить энергетическую проблему и уменьшить вредное воздействие на окружающую среду. Исходя из этого формулируются пять основных условий перспективности новых источников энергии:

наличие достаточных энергосырьевых ресурсов;

возможность массового производства;

технологическая и энергетическая совместимость с транспортными силовыми установками;

приемлемые токсичные и экономические показателипроцесса использования энергии;

безопасность и безвредность эксплуатации.

Существует несколько различных классификаций перспективных автомобильных топлив. Большой практический интерес представляет энергетическая классификация, в основу которой положена калорийность традиционного жидкого углеродного топлива.

У традиционного жидкого углеводородного топлива самая высокая энергоплотность, поэтому автомобиль, работающий на нем, имеет небольшие размеры и массу топливного бака и топливной аппаратуры и не требует сложной системы заправки и хранения топлива. Углеводородные газы и водород обладают более высокой массовой энергоемкостью, но из-за малой плотности у них значительно худшие объемные энергетические показатели. Поэтому использование этих топлив возможно только в сжатом или сжиженном состоянии, что в ряде случаев значительно усложняет конструкцию автомобиля.

Водородное топливо. Большие надежды возлагаются на водородное топливо как на топливо будущего. Обусловлено это его высокими энергетическими показателями, отсутствием большинства токсичных веществ в продуктах сгорания и практически неограниченной сырьевой базой. Именно с водородом связывают перспективное развитие энергетики.

По массовой энергоемкости водород превосходит углеводородные топлива примерно в 3 раза; спирты -- в 5--6 раз. Но из-за очень малой плотности его энергоплотность низка. Водород обладает рядом свойств, сильно затрудняющих его использование: сжижается при 24К; обладает высокой диффузионной способностью; предъявляет повышенные требования к контактирующим материалам, взрывоопасен. Однако несмотря на это, ученые многих стран ведут работы по созданию автомобилей, работающих на водородном топливе. Многочисленные схемы возможного его применения в автомобиле делятся на две группы: водород как основное топливо и как добавки к современным моторным топливам. Основной трудностью при использовании водорода в сжиженном состоянии является его низкая температура. Обычно жидкий водород транспортируется в криогенных резервуарах с двойными стенками, пространство между которыми заполнено изоляцией. Для безопасной эксплуатации жидкого водорода необходимы полная герметизация топливоподающей системы и обеспечение сброса избыточного давления.

Водородная технология, водородная энергетика -- о них говорят все настойчивее по той причине, что этот химический элемент -- основа единственного известного сегодня топлива, не образующего при сгорании пресловутого угарного газа и потому экологически наименее вредного. К тому же запасы его в природе практически неисчерпаемы. Вот почему уже много лет предпринимаются попытки использовать водород для двигателей внутреннего сгорания. В этом направлении еще в 30-е годы работали Московский автомеханический институт, МГТУ имени Баумана и ряд других институтов.

Во время Великой Отечественной войны идею водородного топлива практически применили для автомобилей в войсках противовоздушной обороны на Ленинградском фронте.

В послевоенные годы академик Е. А. Чудаков и профессор И. Л. Варшавский использовали водород для питания одноцилиндрового двигателя в Автомобильной лаборатории АН СССР. Занимались этой проблемой академик В. В. Струминский и другие исследователи. Однако эксперименты тогда не получили широкого размаха. Они стали более актуальными и возобновились позднее. Только в США к 1976г. по этой теме вели исследования 15 экспериментально-конструкторских групп, которые создали 42 разновидности «водородных» двигателей. Аналогичные поиски развернуты учеными ФРГ и Японии.

Столь большой интерес к водороду как к топливу объясняется не только его преимуществами экологического характера, но и физико-химическими свойствами: теплота сгорания у него втрое выше, чем у нефтепродуктов, воспламеняемость смеси с воздухом имеет широкие пределы, водород обладает высокой скоростью распространения пламени и низкой энергией воспламенения -- в 10--12 раз ниже, чем бензин.

В нашей стране обширные работы по использованию водорода для автомобильных двигателей активно ведут многие научные центры.

Метод получения этого химического элемента с применением так называемых энергоаккумулирующих веществ детально разработан Институтом проблем машиностроения АН Украины, который проводит также фундаментальные исследования процессов сгорания водородовоздушных и бензоводородовоздушных смесей, разрабатывает принципиальные схемы силовой установки автомобиля при различных методах хранения нового горючего на борту.

Водород как моторное топливо имеет некоторые особенности, обусловленные его свойствами. Широкие пределы воспламеняемости позволяют лучше регулировать протекание рабочего процесса двигателя. В результате удается повысить экономичность при частичных нагрузках -- режиме, в котором автомобильный двигатель «живет» довольно долго. Теплотворность однородной смеси водорода с воздухом ниже, чем у бензина. Поэтому мощность двигателя на водороде в большей степени, чем при использовании бензина, зависит от способа смесеобразования.

Исследования детонационной стойкости бензоводородовоздушных и водородовоздушных смесей показали, что их склонность к детонации в значительной степени зависит от коэффициента избытка воздуха. И в этом отношении при использовании водорода в качестве топлива выявлены иные закономерности, чем для бензина. Изучение работы двигателей на водородовоздушных и бензоводородовоздушных смесях показало высокую стабильность рабочего процесса. Сравнивая пределы изменения оптимального угла опережения зажигания при работе на водороде и бензине, можно заметить, что в первом случае он существенно зависит от коэффициента избытка воздуха. При обогащении смеси наивыгоднейший угол опережения зажигания значительно уменьшается. Поэтому при работе на водороде двигателю нужны иные регулировки этого параметра.

Наконец, при сгорании водорода отработавшие газы не содержат таких вредных компонентов, как СО, углеводороды, РЬО. Остается только один токсичный компонент в выхлопе -- NО (и то в меньших количествах, чем при работе на бензине). При использовании водорода в качестве добавки содержание вредных компонентов резко сокращается благодаря полноте сгорания. Кроме того, уменьшается необходимость использования вредных антидетонационных свинцовых присадок к бензинам.

Эксперименты показали, что двигатели внутреннего сгорания могут с успехом работать как на чистом водороде, так и на смеси его с парами бензина. Любопытно, что уже 10-процентная добавка (от массы расходуемого топлива) водорода может оказать существенное влияние, снижая токсичность отработавших газов и улучшая экономические показатели. Она намного расширяет пределы воспламеняемости смеси, что создает условия для эффективного регулирования процесса сгорания. Практически это означает возможность устойчивой работы на очень бедных бензоводородовоздушных смесях с большим коэффициентом избытка воздуха, чем обеспечивается значительная экономия бензина. Учитывая то обстоятельство, что двигатель в городских условиях до 30% времени работает на холостом ходу или режимах неполной нагрузки, можно представить себе, какие экономические выгоды несет использование водорода. А работа двигателя при высоких коэффициентах избытка воздуха сопровождается почти полным сгоранием смеси, и, следовательно, в отработавших газах нет токсичных компонентов. В Институте проблем машиностроения АН Украины уже разработаны автомобильные силовые установки, действующие на водородном топливе. Для них водород получают из воды (с применением энергоаккумулирующих веществ, в основе которых лежат окислы металлов), а также из гидридов -- веществ, способных при охлаждении поглощать водород, а при нагревании -- отдавать его.

Связывать водород гидридами необходимо в интересах безопасности, так как при утечках из баллонов он образует, смешиваясь с воздухом, взрывчатую смесь, которая легко воспламеняется (вспомните частые аварии дирижаблей с емкостями, заполненными водородом). Но важнее тот факт, что гидриды являются более рациональным методом хранения водорода на борту автомобиля по объемным показателям.

Общая схема силовой установки топлива: водородное топливо, получаемое в результате взаимодействия энергоаккумулирующих веществ с водой, подается системой питания в двигатель. Мощность двигателя регулируется компонентами, подаваемыми в реактор для освобождения связанного водорода.

Силовая установка может быть выполнена как по открытому, так и закрытому циклу. В первом случае на борту автомобиля размещаются только емкости для энергоаккумулирующих веществ и воды, а продукты сгорания выбрасываются в атмосферу. При замкнутом цикле дополнительно вводятся теплообменник и конденсатор, позволяющие использовать пары воды из выхлопных газов. Поступающая в реактор с энергоаккумулирующими веществами вода снова служит источником для получения водорода. Так при замкнутом цикле «носителем» топлива служит вода, а энергией -- энергоаккумулирующие вещества. Водородное топливо при обоих циклах может использоваться в чистом виде или в качестве добавок (5--10% по массе). В последнем случае на машине сохраняется система питания бензином. «Извлечение» водорода из воды происходит в реакторе, содержащем энергоаккумулирующие вещества. Наиболее простым является реактор постоянного действия, в котором давление поддерживается регулировкой подачи компонентов в зону реакции.

Процесс получения в нем топлива происходит не мгновенно, т. е. он обладает некой инерцией. Выделяющийся в реакторе водород поэтому должен поступать к мотору через редуктор-регулятор, поддерживающий оптимальное давление перед форсунками подачи.

По разработанным методикам для испытаний с применением энергоаккумулирующих веществ на основе оксидов металлов, а также с использованием гидридов были апробированы серийные легковые автомобили «Москвич» и «ВАЗ».

Первый эксперимент (применение энергоаккумулирующих веществ -- автомобиль «Москвич») -- система питания бензином оставлена без изменения. На машине смонтированы два реактора 1, обеспечивающие получение водорода из воды, и редуктор 5, предназначенный для дозирования подачи топлива на разных режимах работы двигателя.

Реакторы периодического действия имеют постоянную загрузку энергоаккумулирующих веществ на основе кремния или алюминия с регулируемой подачей воды. Насосы высокого давления 4, приводимые электродвигателем, подают воду из бака через подогреватель и фильтр к реактору, где ее распыляют форсунки. В водяной системе установлены обратные клапаны, предотвращающие проникновение туда водорода при прекращении подачи воды. Кроме того, в ней предусмотрен кран 3, который переключает подачу воды с одного реактора на другой. Все агрегаты этой экспериментальной установки смонтированы на общей раме и помещены в багажнике.

Установка с применением энергоаккумулирующих веществ для питания двигателя водородом: 1 -- реакторы периодического действия; 2 -- бак для воды; 3 -- кран подачи воды в реактор; 4 -- блок насосов с электроприводом; 5 -- редуктор в системе подачи водорода

Водород от реакторов поступает к крану, установленному на приборной панели, которым водитель соединяет работающий реактор 1 с системой подачи водорода. Последняя состоит из понижающего редуктора, влагоотделителя, газового счетчика и редуктора регулирования подачи водорода (управляется специальной педалью). Топливо вводится во впускной трубопровод, непосредственно перед впускным клапаном.

Для работы на водороде, получаемом из гидридов, система питания бензином также сохранена и дополнительно установлена система хранения и подачи водорода (автомобиль «ВАЗ»). Она состоит из гидридного бака 1, нагреваемого отработавшими газами, редуктора со всережимным вакуумным регулятором 9 расхода водорода и смесителя 8, сделанного на базе серийного карбюратора. Скорость выделения водорода гидридом система регулирует автоматически (блок управления 10, реле давления 2, заслонка с электромагнитным приводом 7 на выпускной трубе), поддерживает постоянным, независимо от режима двигателя, давление водорода в системе. Гидридный бак при зарядке охлаждается водой.

Установка с применением гидридов: 1 -- гидридный бак; 2 -- реле давления; 3 -- вентиль заправки; 4 -- выхлопной патрубок гидридного бака; 5 -- глушитель; 6 -- бензиновый бак; 7 -- электромагнитный привод заслонки; 8 -- смеситель; 9 -- регупятор давления и расхода водорода; 10 -- блок электронного управления

Применение водорода в качестве дополнительного топлива для карбюраторных двигателей открывает возможность принципиально нового подхода к организации рабочего процесса. При минимальной модификации двигателя, касающейся в основном системы питания, можно достичь значительного повышения его топливной экономичности (эксплуатационный расход бензина снижается на 35--40%) и уменьшить токсичность отработавших газов.

Таблица 13 Токсичность отработавших газов,

Водотопливные эмульсии. Применение воды в рабочем процессе двигателя внутреннего сгорания не является новинкой последних лет. Впрыск воды использовался для обеспечения работы двигателей внутреннего сгорания на низкооктановых топливах еще в 30-е годы.

Сейчас основное внимание при использовании воды в качестве добавки к топливу уделяется возможности повышения экономичности и снижения токсичности отработавших газов автомобиля.

Водотопливные эмульсии -- это жидкое топливо с мельчайшими каплями равномерно распределенной по объему топлива воды. Эмульсия приготовляется непосредственно на автомобиле. Для предотвращения расслоения эмульсии в топливо добавляется эмульгатор в количестве 0,2--0,5%. Содержание воды в водотопливной эмульсии может достигать 30--40%.

Применение водотопливных эмульсий возможно как в карбюраторном, так и дизельном двигателе. Но в карбюраторном двигателе применение водотопливных эмульсий в ряде случаев приводит к ухудшению некоторых показателей (в частности, топливной экономичности), отказам при полном открытии дроссельной заслонки, перебоям при движении с низкой скоростью. Наилучшие результаты дает использование водотопливных эмульсий на дизельных двигателях. Подача в камеру сгорания воды обеспечивает дополнительное распыление топлива за счет дробления перегретыми парами воды. Удельный расход топлива при этом снижается на 4--10%.

Добавка воды к топливу позволяет снизить содержание некоторых токсичных веществ в отработавших газах за счет уменьшения максимальных температур в камере сгорания, величина которых определяет количество NОх. При применении водотопливных эмульсий количество NOх может снизиться на 40-- 50%. Снижается также дымность отработавших газов, так как сажа при наличии паров воды взаимодействует с ними с образованием углекислого газа и азота. Выделение СО остается практически неизменным по сравнению с работой двигателя внутреннего сгорания на топливе без добавки воды, а выделение СпНш несколько увеличивается. Этот вид топлива пока не нашел широкого применения на автомобильном транспорте, поскольку усложняется конструкция автомобиля, возникает ряд проблем при эксплуатации в зимний период, недостаточно изучено влияние воды на условия работы и долговечность двигателя внутреннего сгорания.

Синтетические спирты. В качестве топлива для двигателя внутреннего сгорания автомобилей нашли применение метанол и этанол как в чистом виде, так и в составе многокомпонентных смесей.

Наибольшее распространение автомобили, работающие на спиртовом топливе, получили в Бразилии, которая ввозит 80--85% нефтепродуктов, расплачиваясь за них валютой. Расходы на горючее растут из года в год и исчисляются миллиардами долларов. Поэтому в стране с энтузиазмом был встречен объявленный президентом в 1975г. проект «алкоголизации транспорта». Топливные баки бразильских автомобилей заправляются смесью спирта и бензина в пропорции 1:4.

Со временем предполагается перевести весь автопарк на использование этилового спирта вместо бензина. Спирт получают из сахарного тростника (Бразилия -- крупнейший в мире производитель этой культуры). Возможно получение до 80 т биомассы с 1га в год. Плантаций, занимающих 2% территории страны, будет достаточно, чтобы обеспечить потребность в новом горючем.

По расчетам специалистов 1л спирта обходится на 30-- 35 % дешевле бензина.

Мексика, вторая по численности населения страна Латинской Америки, готова последовать бразильскому примеру. В США также проявляется интерес к производству топливного спирта из древесных, сельскохозяйственных и иных отходов.

С энергетической точки зрения преимущество спиртовых топлив заключается в высоком КПД рабочего процесса и высокой антидетонационной стойкости топлива, но теплота сгорания спиртов примерно вдвое ниже, чем у бензинов. Низкая энергоемкость спиртов ведет к увеличению удельного расхода топлива.

Использование спиртов требует сравнительно небольшого изменения конструкции автомобиля. Основные мероприятия сводятся к увеличению объема топливных баков и установке устройств, обеспечивающих стабильный пуск двигателя в любую погоду. Требуется также замена некоторых металлов и прокладочных материалов, в частности облицовка пластмассой метанольного бака. Это связано с высокой коррозийной активностью спиртов и необходимостью более тщательной герметизации топливоподающей системы, поскольку метанол является нервно-сосудистым ядом. Применение бензометанольной смеси выдвигает ряд других специфических требований. В частности, ужесточаются требования к давлению насыщенных паров бензина, поскольку даже с 5 %-ной добавкой метанола оно значительно увеличивается. Чтобы избежать расслоения смеси, при ее хранении, транспортировке и применении необходимо соблюдать определенную температуру и не допускать попадания в нее воды. Некоторые синтетические материалы, используемые в системах подачи топлива и в автомобильных системах питания, оказались нестойкими к бензометанольной смеси. При переводе автомобиля с бензина на бензометанольную смесь пришлось изменить пропускную способность жиклеров, при этом несколько увеличился общий расход топлива. Вместе с тем установлено, что смесь с содержанием метанола до 15 % не ухудшает основных технико-эксплуатационных показателей грузовых автомобилей. Высокие антидетонационные показатели спиртов позволяют повышать степень сжатия двигателя внутреннего сгорания до 14--15 единиц.

Использование спиртовых топлив снижает содержание токсичных веществ в отработавших газах, что объясняется более низкой температурой горения спиртового топлива.

С начала 70-х годов, когда резко обострилась энергоэкологическая ситуация, практически все промышленно развитые страны развернули широкий поиск альтернативных энергоносителей, способных заменить бензин и дизельное топливо. Среди альтернативных топлив особое внимание уделяется водороду: его использование для двигателей внутреннего сгорания позволяет решить как сырьевую, так и экологическую проблемы, причем сделать это без коренной перестройки технической базы современного двигателестроения. В частности, исследования показали, что применение водорода в качестве основного или дополнительного топлива для двигателей с принудительным воспламенением заряда повышает их топливную экономичность на 30--40% и резко снижает токсичность отработавших газов, так как моторные свойства позволяют двигателям работать на бедных смесях при качественном регулировании мощности. За рубежом работы по созданию автомобильных «водородных» двигателей внутреннего сгорания ведутся передовыми развитыми странами уже давно и довольно успешно. В частности, автомобильная компания «Даймлер--Бенц» (Германия) изготавливала легковые автомобили и микроавтобусы на базе серийных моделей, двигатели которых питаются как бензином с добавкой водорода, так и «чистым» водородом. Из трех приемлемых для автотранспортных средств способов аккумулирования водорода -- в сжатом до 20 МПа, сжиженном при температуре 20К или химически связанном в металлогидридах состоянии -- на экспериментальных автомобилях фирмы «Даймлер--Бенц» применялся последний.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Оценка экологичности сжигания органических видов топлива предприятиями топливно-энергетического комплекса

В.Л. Гапонов 1 , Н.С. Самарская 2

1 Донской государственный технический университет,

Ростов-на-Дону

2 Ростовский государственный строительный университет

Аннотация

В статье авторами рассмотрены органические виды топлива как наиболее распространенные источники получения тепловой и электрической энергии на предприятиях топливно-энергетического комплекса. Выявлены преобладающие виды органического топлива - природный газ, уголь, мазут, а также проанализирован состав отходящих газов в зависимости от вида сжигаемого органического топлива. Исследовано негативное воздействие предприятий топливно-энергетического комплекса на компоненты окружающей среды. В заключении авторами сделан вывод о том, что, по сравнению с другими видами органического топлива, сжигание природного газа наносит минимальный вред окружающей среде.

Ключевые слова: органические виды топлива, сжигание топлива, загрязнение окружающей среды, отходящие газы, загрязняющие вещества.

Анализ современного состояния топливно-энергетического комплекса (ТЭК) России позволяет сделать вывод о том, что органические виды топлива - наиболее распространенные источники для получения тепловой и электрической энергии . В структуре потребления различных видов органического топлива предприятиями ТЭК преобладает природный газ (73,0%) и уголь (11,3%) (рис. 1) .

Деятельность предприятий ТЭК сопровождается существенным материальным и энергетическим загрязнением окружающей среды (табл. №1) . органический топливо отходящий газ

Степень загрязнения поверхностных и подземных водных объектов предприятиями ТЭК зависит от сжигаемого в них органического топлива, применяемой технологии сброса, типа охлаждающей системы, а, следовательно, количества используемой воды и реагентов . Предприятия ТЭК являются также источниками теплового загрязнения водоемов и водотоков, так как используют воду как охлаждающую среду.

Рис.1. - Структура потребления различных видов органического топлива предприятиями ТЭК

Таблица № 1. Возможные пути поступления загрязняющих веществ от предприятий ТЭК в окружающую среду в зависимости от типа источника и вещества

Источник загрязнения компонента окружающей среды

(А - атмосфера,

П - почва)

Загрязняющее вещество

Твердые частицы

Оксиды серы

Оксиды азота

Оксиды углерода

Органические соединения

Кислоты/щелочи/соли и т.п.

Металлы и их соли

Хлор (в виде гипохлорида)

Ртуть и/или кадмий

Диоксины

Хранение и транспортировка топлива

Водоподготовка

Дымовые газы

Очистка дымовых газов

Сток с площадки, включая ливневые стоки

Очистка сточных вод

Продувка системы охлаждения

Выбросы градирен

Акустическое (шумовое и вибрационное) загрязнения от предприятий ТЭК связано в основном с использованием котлов, паровых и газовых турбин, а также процессами транспортировки и погрузки топлива, отходов и побочных продуктов, использованием крупных насосов и вентиляторов; предохранительных клапанов; систем охлаждения и т.п. Однако, как правило, зона воздействия шума и вибрации, производимого предприятием, относительно невелика.

Состав отходящих газов и количество выбрасываемых загрязняющих веществ существенно зависит от вида сжигаемого топлива (рис. 2) .

При сжигании природного газа значимым загрязнителем являются оксиды азота, присутствуют также оксиды углерода. Концентрация бензапирена ничтожна мала. Причем, особенности сжигания природного газа определяют снижение выбросов оксидов азота в отходящих газах на 20-25% по сравнению с твердыми видами топлива.

Наличие в отходящих газах оксидов серы, оксидов азота, золы, соединений ванадия, солей натрия и др. характерно для сжигания жидких видов органического топлива, в первую очередь мазута. При сжигании твердого топлива, помимо вышеперечисленных загрязняющих веществ, выделяется значительное количество твердых частицы, состоящих из золовых частиц (летучая зола), несгоревшего твердого топлива и сажи, причем основную долю составляют золовые частицы.

Рис. 2. - Удельные показатели (кг/т, кг/тыс. м 3) выделения основных загрязняющих веществ с отходящими газами предприятий ТЭК

Образуются также золошлаковые отходы, для размещения которых требуется отчуждение значительного количества земель. Земли, отведенные под золошлаковые отходы, практически безвозвратно изымаются из полезного использования, так как золошлаки могут содержать примеси различных микроэлементов (никель Ni, кобальт Co, кадмий Cd, свинец Pb, сурьма Sb, хром Cr, марганец Mn, мышьяк As, ртуть Hg и и др.).

Бенз(а)пирен также содержится в составе жидкого и твердого топлива. Поэтому возможен его переход из топлива в продукты сгорания вместе с невыгоревшими сажистыми и коксовыми частицами.

Анализ использования различных видов органического топлива котельными показал, что природный газ характеризуется относительной экологической безопасностью продуктов сгорания, которые практически не содержат твердых частиц и сернистых соединений. Использование природного газа улучшает состояние воздушного бассейна городов и крупных промышленных центров, а уголь, которого в нашей стране сжигается меньше, чем природного газа, вызывает серьезные негативные экологические последствия.

Литература

1. Новак А. В. Итоги работы Минэнерго России и основные результаты функционирования ТЭК в 2014 г.: Задачи на среднесрочную перспективу URL: minenergo.gov.ru/upload/iblock/36e/prezentatsiya-itogovoy-kollegii.pdf.

2. Синяк Ю. В., Некрасов А. С., Воронина С. А. и др. Топливно-энергетический комплекс России: возможности и перспективы // Проблемы прогнозирования. 2013. № 1. С. 4-21.

3. Энергетическая стратегия России на период до 2030 г. (Утверждена распоряжением Правительства РФ от 13 ноября 2009 г., № 1715-р) URL: minenergo.gov.ru/aboutminen/energostrategy/

4. Комплексное предотвращение и контроль загрязнения окружающей среды. Справочный документ по наилучшим доступным технологиям. Экономические аспекты и вопросы воздействия на различные компоненты окружающей среды URL: 14000.ru/

5. Сигал И. Я. Защита воздушного бассейна при сжигании топлива. Л.: Недра, 1988. 312 с.

6. Mikulandric R., Lonсar D., Cvetinovic D. Improvement of environmental aspects of thermal power plant operation by advanced control concepts // Thermal Science. 2013. Vol. 16. Issue 3. Рp. 759-772

7. Paliwal S., Chandra H., Tripathi A. Investigation and analysis of air pollution emitted from thermal power plants: a critical review // International journal of mechanical engineering and technology (IJMET). 2013. Vol. 4, Issue 4. Рp. 2-37

8. Манжина С.А., Денисова И.А., Популиди К.К. Экономические аспекты диверсификации тепловой энергетики с учетом экологических требований // Инженерный вестник Дона, 2014, №1 URL: ivdon.ru/ru/magazine/archive/n1y2014/2260

9. Ганичева Л. З. Анализ состояния атмосферного воздуха в промышленных городах Ростовской области // Инженерный вестник Дона, 2013, №2 URL: ivdon.ru/ru/magazine/archive/n2y2013/1701/

10. Ахмедов Р. Б., Цирульников Л. М. Технология сжигания горючих газов и жидких топлив. Л.: НЕДРА, 1984. 238 с.

11. Котлер В. Р., Беликов В. Р. Промышленно-отопительные котельные: сжигание топлив и защита атмосферы. СПб.: Энерготех, 2001. 272 с.

References

1. Itogi raboty Minenergo Rossii i osnovnye rezul"taty funktsionirovaniya TEK v 2014 g.: Zadachi na srednesrochnuyu perspektivu URL: minenergo.gov.ru/upload/iblock/36e/prezentatsiya-itogovoy-kollegii.pdf.

2. Sinyak Yu. V., Nekrasov A. S., Voronina S. A. i dr. Problemy prognozirovaniya. 2013. № 1. Pр. 4-21.

3. Energeticheskaya strategiya Rossii na period do 2030 g. URL: minenergo.gov.ru/aboutminen/energostrategy/

4. Kompleksnoe predotvrashchenie i kontrol" zagryazneniya okruzhayushchey sredy. Spravochnyy dokument po nailuchshim dostupnym tekhnologiyam. Ekonomicheskie aspekty i voprosy vozdeystviya na razlichnye komponenty okruzhayushchey sredy URL: http://www.14000.ru/

5. Sigal I. Ya. Zashchita vozdushnogo basseyna pri szhiganii topliva . L.: Nedra, 1988. 312 p.

6. Mikulandric R., Lonsar D., Cvetinovic D. Thermal Science. 2013. Vol. 16. Issue 3. Pp. 759-772

7. Paliwal S., Chandra H., Tripathi A. International journal of mechanical engineering and technology (IJMET). 2013. Vol. 4, Issue 4. Pp. 2-37

8. Manzhina S.A., Denisova I.A., Populidi K.K. Inћenernyj vestnik Dona (Rus), 2014, №1 URL: ivdon.ru/ru/magazine/archive/n1y2014/2260

9. Ganicheva L. Z. Inћenernyj vestnik Dona (Rus), 2013, №2 URL: ivdon.ru/ru/magazine/archive/n2y2013/1701/

10. Akhmedov R. B., Tsirul"nikov L. M. Tekhnologiya szhiganiya goryuchikh gazov i zhidkikh topliv . L.: NEDRA, 1984. 238 p.

11. Kotler V. R., Belikov V. R. Promyshlenno-otopitel"nye kotel"nye: szhiganie topliv i zashchita atmosfery . SPb.: Energotekh, 2001. 272 p.

Размещено на Allbest.ru

...

Подобные документы

    Классификация загрязняющих веществ по степени опасности для здоровья человека. Расчет предельно-допустимых норм загрязнения и экологические нормативы. Характеристика наиболее опасных загрязняющих веществ объектов топливно-энергетического комплекса.

    контрольная работа , добавлен 17.07.2010

    Структура топливно-энергетического комплекса: нефтяная, угольная, газовая промышленность, электроэнергетика. Влияние энергетики на окружающую среду. Основные факторы загрязнения. Источники природного топлива. Использование альтернативной энергетики.

    презентация , добавлен 26.10.2013

    Анализ степени и механизмов воздействия ракетного топлива на окружающую среду. Обоснование приоритетных токсичных соединений ракетного топлива. Проведение оценки экологического риска, связанного с использованием космического ракетного комплекса "Союз-2".

    дипломная работа , добавлен 25.05.2014

    Общая характеристика теплоэнергетики и её выбросов. Воздействие предприятий на атмосферу при использовании твердого, жидкого топлива. Экологические технологии сжигания топлива. Влияние на атмосферу использования природного газа. Охрана окружающей среды.

    контрольная работа , добавлен 06.11.2008

    Основные компоненты, выбрасываемые в атмосферу при сжигании различных видов топлива в энергоустановках. Расчет суммарного расхода топлива и высоты дымовой трубы. Анализ зависимости концентрации вредных примесей от расстояния до источника выбросов.

    контрольная работа , добавлен 10.04.2011

    Текущее состояние экологичности российского топлива. Бензин со свинцовыми добавками. Перспективы России по производству евродвигателей и экологичных видов топлива. Перечень регионов, в которых реализуется дизтопливо, соответствующее стандарту "Евро-4".

    реферат , добавлен 27.12.2012

    Структура и компоненты, а также оценка негативного влияние топливно-энергетического комплекса на окружающую среду. Климатические характеристики района и анализ влияния Приводинского линейно-производственного управления магистральных газопроводов.

    дипломная работа , добавлен 09.11.2016

    Анализ экологических проблем, связанных с действием топливно-энергетического комплекса и тепловых электрических станций на окружающую среду. Характер техногенного воздействия. Уровни распространения вредных выбросов. Требования к экологически чистым ТЭС.

    реферат , добавлен 20.11.2010

    Общая характеристика внешней среды промышленного предприятия. Статистика расходов на охрану окружающей среды. Проблемы воздействия теплоэнергетики на атмосферу. Загрязнители атмосферы, образующиеся при сжигании топлива. Инвентаризация источников выбросов.

    курсовая работа , добавлен 19.07.2013

    Прогноз дальнейшего развития топливно-энергетического комплекса России. Основные исходные данные для расчета ветровой эрозии золоотвала. Характеристика эродируемых частиц. Расчет текущего пылевого выноса и рассеивания золовых частиц в атмосфере.

Определяющее влияние транспорта на состояние окружающей среды требует особого внимания к при­менению новых экологически чистых видов топлива. К ним относится, прежде все­го, сжиженный или сжатый газ.

В мировой практике в качестве моторного топлива наиболее широко используется сжатый природный газ, содержащий не менее 85 % метана.

В меньшей степени распространено применение по­путного нефтяного газа; представляющего собой смесь, в основном - пропана и бутана. Эта смесь может нахо­диться в жидком состоянии при обычных температу­рах под давлением до 1,6 МПа. Для замещения 1 л бензина требуется 1,3 л сжиженного нефтяного газа, а экономическая эффективность его по эквивалентным затратам на топливо в 1,7 раз ниже, чем у сжатого газа. Следует отметить, что природный газ, в отличие от не­фтяного газа, не токсичен.

Анализ показывает, что применение газа сокращает выбросы: окислов углерода - в 3-4 раза; окислов азо­та - в 1,5-2 раза; углеводородов (не считая метана) - в 3-5 раз; частиц сажи и двуокиси серы (дымность) дизельных двигателей - в 4-6 раз.

При работе на природном газе с коэффициентом из­бытка воздуха а=1,1 выбросы ПАУ, образующихся в двигателе при сгорании топлива и смазочного масла (включая бенз(а)пирен), составляют 10 % от выбросов при работе на бензине. Двигатели, работающие на природном газе, уже сейчас удовлетворяют всем современ­ным нормам по содержанию газообразных и твердых составляющих в выхлопных газах.

Токсичные компоненты выхлопных газов

Вид топлива

(без метана)

Бензапирен

Бензин (двигатели с нейтрализат.)

Дизтопливо

Газ+дизтопливо

Пропан-бутан

природ, сжатый

Особо следует остановиться на выбросах углеводоро­дов, которые претерпевают в атмосфере фотохимичес­кое окисление под действием ультрафиолетового облу­чения (ускоряющееся в присутствии NO x). Продукты этих окислительных реакций образуют так называемый смог. В бензиновых двигателях основное количество уг­леводородных выбросов приходится на этан и этилен, а в газовых - на метан. Это связано с тем, что эта часть выбросов бензиновых двигателей образуется в резуль­тате крекинга паров бензина в несгорающей части сме­си при высоких температурах, а в газовых двигателях несгорающий метан никаким преобразованиям не под­вергается.

Легче всего под воздействием ультрафиолетового облучения окисляются непредельные углеводороды, такие, как этилен. Предельные углеводороды, вклю­чая метан, более стабильны, т.к. требуют для фотохимической реакции более жесткого (коротковолнового) излучения. В спектре солнечного излучения составля­ющая, инициирующая окисление метана, имеет столь малую интенсивность по сравнению с инициаторами окисления других углеводородов, что практически окис­ление метана не происходит. Поэтому в ограничитель­ных стандартах автомобильных выбросов ряда стран углеводороды учитывают без метана, хотя пересчет ве­дется на метан.

Таким образом, несмотря на то, что сумма углево­дородов в выхлопных газах двигателей, использую­щих газомоторное топливо, оказывается такой же, как и у бензиновых двигателей, а в газодизеле часто и выше, эффект загрязнения воздушного бассейна этими ком­понентами при газовом топливе в несколько раз мень­ше, чем при жидком.

Важно также иметь в виду, что при применении газового топ­лива увеличивается моторесуры двигателя - в 1,4- 1,8 раза; срок службы свечей зажигания - в 4 раза и моторного масла - в 1,5-1,8 раза; межремонтный пробег - в 1,5-2 раза. При этом снижаются уровень шума на 3-8 дБ и время заправки. Все это обеспечива­ет быструю окупаемость затрат на перевод транспорта на газомоторное топливо.

Внимание специалистов привлекают вопросы безо­пасности использования газомоторного топлива. В це­лом взрывоопасная смесь газовых топлив с воздухом образуется при концентрациях, в 1,9-4,5 раза. Однако определенную опасность представляют утеч­ки газа через неплотность соединений. В этом отноше­нии наиболее опасен сжиженный нефтяной газ, т.к. плотность его паров больше, чем воздуха, а для сжато­го - меньше (соответственно, 3:1,5:0,5). Следователь­но, утечки сжатого газа после выхода из неплотностей поднимаются вверх и улетучиваются, а сжиженного - образуют местные скопления и, подобно жидким неф­тепродуктам, «разливаются», что при возгорании уве­личивает очаг пожара.

Кроме сжиженного или сжатого газа многие специ­алисты предрекают большое будущее жидкому водоро­ду, как практически идеальному, с экологической точ­ки зрения, моторному топливу. Еще несколько десяти­летий назад применение жидкого водорода в качестве горючего казалось достаточно отдаленным. К тому же трагическая гибель в канун второй мировой войны на­полненного водородом дирижабля «ГинденбурТ» настоль­ко подмочила общественную репутацию «топлива бу­дущего», что надолго вычеркнуло его из каких-либо серьезных проектов.

Быстрое развитие космической техники вновь зас­тавило обратиться к водороду, на этот раз уже жидко­му, как почти идеальному горючему для исследования и освоения мирового пространства. Тем не менее, по-прежнему не исчезли сложные инженерные проблемы, связанные как со свойствами самого водо­рода, так и его производством. Как горючее для транс­порта водород удобнее и безопаснее применять в жид­ком виде, где в пересчете на один килограмм он пре­восходит по калорийности керосин в 8,7 раза и жидкий метан в 1,7 раза. В то же время плотность жидкого водорода меньше, чем у керосина почти на порядок, что требует значительно больших баков. К тому же во­дород должен храниться при атмосферном давлении при очень низкой температуре - 253 градуса Цельсия. От­сюда необходимость соответствующей теплоизоляции баков, что также тянет за собой дополнительный вес и объем. Высокая температура горения водорода приво­дит к образованию значительного количества экологи­чески вредных окислов азота, если окислителем является воздух. И, наконец, пресловутая проблема безо­пасности. Она по-прежнему остается серьезной, хотя и считается теперь значительно преувеличенной. Отдельно следует сказать о производстве водорода. Почти един­ственным сырьем для получения водорода служат на сегодня те же горючие ископаемые: нефть, газ и уголь. Поэтому истинный перелом в мировой топливной базе на основе водорода может быть достигнут лишь путем принципиального изменения способа его производства, когда исходным сырьем станет вода, а первичным ис­точником энергии - Солнце или сила падающей воды. Водород принципиально превосходит все ископаемые виды горючего, включая и природный газ, в своей об­ратимости, то есть практической неисчерпаемости. В отличие от горючих, добываемых из-под земли, кото­рые после сгорания теряются безвозвратно, водород добывается из воды и сгорает опять в воду. Разумеется, чтобы получить водород из воды, нужно затратить энер­гию, причем значительно большую, чем можно исполь­зовать затем при его сгорании. Но это не имеет суще­ственного значения, если так называемые первичные источники энергии будут в свою очередь неисчерпае­мыми и экологически чистыми.

Разрабатывается и второй проект, где в качестве источника первичной энергии используется Солнце. Подсчитано, что на широтах ± 30-40 градусов наше светило греет примерно в 2-3 раза сильнее, чем в бо­лее северных широтах. Это объясняется не только бо­лее высоким положением Солнца на небе, но и несколько меньшей толщиной атмосферы в тропических регио­нах Земли. Однако почти вся эта энергия быстро рассе­ивается и пропадает. Получение с помощью ее жидкого водорода - наиболее естественный способ аккумуляции солнечной энергии с последующей доставкой ее в север­ные районы планеты. И не случайно научно-исследова­тельский центр, организованный в Штутгарте, имеет характерное название «Солнечный водород - источ­ник энергии будущего». Установки, аккумулирующие солнечный свет, предполагается, согласно указанному проекту, разместить в Сахаре. Сконцентрированное та­ким образом небесное тепло будет использовано для привода паротурбин, вырабатывающих электроэнергию. Дальнейшие звенья схемы те же, что и в канадском варианте, с той лишь разницей, что жидкий водород доставляется в Европу через Средиземное море. Прин­ципиальное сходство обоих проектов, как видим, в том, что они экологически чисты на всех стадиях, включая даже перевозку сжиженного газа по воде, поскольку танкеры работают опять-таки на водородном топливе. Уже сейчас такие всемирно известные немецкие фир­мы, как «Линде» и «Мессергрисхейм», расположенные в районе Мюнхена, производят все необходимое обору­дование для получения, сжижения и транспортировки жидкого водорода, за исключением разве что криоген­ных насосов. Громадный опыт по использованию жид­кого водорода в ракетно-космической технике накоп­лен фирмой «МББ», расположенной в Мюнхене и при­нимающей участие практически во всех престижных программах Западной Европы по освоению космоса. Научно-исследовательское оборудование фирмы в об­ласти криогеники используется также на американс­ких космических челноках. Широко известная немец­кая авиакомпания «Дейче Эрбас» разрабатывает пер­вый в мире аэробус, летающий на жидком водороде. Помимо экологических соображений применение жид­кого водорода в обычной и сверхзвуковой авиации пред­почтительно и по другим причинам. Так, примерно на 30 % при прочих равных условиях снижается взлет­ный вес самолета. Это позволяет, в свою очередь, со­кратить разбег и сделать взлетную кривую более кру­той. В результате снижается шум - этот бич современ­ных аэропортов, расположенных зачастую в густо­населенных районах. Не исключена также возможность снижения лобового сопротивления самолета путем силь­ного охлаждения его носовых частей, встречающих поток воздуха.

Все изложенное выше позволяет сделать вывод, что переход на водородное топливо, в первую очередь в авиа­ции, а затем и в наземном транспорте станет реальнос­тью уже в первые годы нового века. К этому времени будут преодолены технические проблемы, окончатель­но ликвидировано недоверие к водороду как чересчур опасному виду горючего и создана необходимая инфра­структура.

Многие годы исследователи бьются над поиском альтернативы бензину как основному типа топлива для автотранспорта. Экологические и ресурсные причины нет смысла перечислять - о токсичности выхлопных газов не говорит только ленивый. Решение проблемы ученые находят в самых, порой, необычных видах топлива. Recycle выбрал наиболее интересные идеи, бросающие вызов топливной гегемонии бензина.


Биодизель на растительных маслах

Биодизель - разновидность биотоплива на основе растительных масел, которая применяется как в чистом виде, так и в качестве различных смесей с дизельным топливом. Идея применения растительного масла в качестве топлива принадлежит еще Рудольфу Дизелю, который в 1895 году создал первый дизельный двигатель для работы на растительном масле.

Как правило, для получения биодизеля используют рапсовое, подсолнечное и соевое масла. Разумеется, сами по себе растительные масла в качестве топлива в бензобак не заливаются. В растительном масле содержатся жиры — эфиры жирных кислот с глицерином. В процессе получения «биосоляры» эфиры глицерина разрушают и заменяют глицерин (он выделяется как побочный продукт) на более простые спирты — метанол и, реже, этанол. Это и становится компонентом биодизеля.

Во многих европейских странах, а также в США, Японии и Бразилии, биодизель уже стал неплохой альтернативой обычному бензину. Так, в Германии рапсовый метиловый эфир продается уже более чем на 800 заправочных станциях. В июле 2010 года в странах Евросоюза работали 245 заводов по производству биодизеля суммарной мощностью 22 млн тонн. Аналитики компании Oil World прогнозируют, что к 2020 г. доля биодизеля в структуре потребляемого моторного топлива в Бразилии, Европе, Китае и Индии составит 20%.

Биодизель — экологичное топливо для транспорта: в сравнении с обычным дизельным топливом он почти не содержит серы и при этом подвергается практически полному биологическому распаду. В почве или в воде микроорганизмы за 28 дней перерабатывают 99% биодизеля — это минимизирует степень загрязнения рек и озёр.


Сжатый воздух

Модели пневмоавтомобилей — машин, ездящих на сжатом воздухе — выпущены уже несколькими компаниями. Инженеры Peugeot в свое время произвели фурор в автомобильной индустрии, заявив о создании гибрида, у которого в помощь к двигателю внутреннего сгорания добавляется энергия сжатого воздуха. Французские инженеры рассчитывали, что такая разработка поможет малолитражкам сократить расход топлива до 3 л на 100 км. Специалисты Peugeot утверждают, что в городе пневмогибрид может до 80% времени передвигаться на сжатом воздухе, не создав ни миллиграмма вредных выбросов.

Принцип работы «воздухомобиля» довольно прост: в движение машину приводит не сгорающая в цилиндрах мотора бензиновая смесь, а мощный поток воздуха из баллона (давление в баллоне — около 300 атмосфер). Пневматический мотор конвертирует энергию сжатого воздуха во вращение полуосей.

К сожалению, машины целиком на сжатом воздухе или air-гибриды создаются, в основном, мизерными партиями — для работы в специфических условиях и на ограниченном пространстве (например, на производственных площадках, требующих максимального уровня пожарной безопасности). Хотя существуют некоторые модели и для «стандартных» покупателей.

Экологически чистый микрогрузовичок Gator от компании Engineair - первый в Австралии автомобиль на сжатом воздухе, поступивший в реальную коммерческую эксплуатацию. Его уже можно видеть на улицах Мельбурна. Грузоподъёмность - 500 кг, объём баллонов с воздухом - 105 литров. Пробег грузовичка на одной заправке - 16 км.


Продукты жизнедеятельности

До чего дошел прогресс — некоторым автомобилям для работы двигателя нужен не бензин, а попадающие в канализацию отходы жизнедеятельности человека. Такое чудо автопрома создали в Великобритании. На улицы Бристоля выкатили автомобиль, который использует в качестве топлива метан, выделенный из человеческих экскрементов. Прототипической моделью стал Volkswagen Beetle, а производитель машины VW Bio-Bug на инновационном топливе - компания GENeco. Установленный на кабриолете «Фольксваген» перерабатывающий фекалии двигатель позволил проехать 15 тысяч километров.

Изобретение GENeco поспешили назвать прорывом во внедрении энергосберегающих технологий и экологически чистого топлива. Обывателю идея кажется сюрреалистической, поэтому стоит разъяснить: в автомобиль загружается, конечно, уже переработанное топливо — в виде готового к использованию метана, полученного заблаговременно из отходов жизнедеятельности.

При этом двигатель VW Bio-Bug использует два вида топлива одновременно: машина стартует от бензина, но, как только двигатель прогревается, а автомобиль набирает определенную скорость, включается подача переработанного на заводах GENeco человеческого желудочного газа. Потребители могут даже не заметить разницы. Впрочем, остается главная маркетинговая проблема — человеческое негативное восприятие того сырья, из которого получают биогаз.


Солнечные батареи

Производство автомобилей, питающихся солнечной энергией — пожалуй, самое развитое направление автопрома, ориентированного на использование эко-топлива. Машины на солнечных батареях создаются по всему миру и в самых разных вариациях. Еще в 1982 году изобретатель Ханс Толструп на солнцемобиле «Quiet Achiever» («Тихий рекордсмен») пересёк Австралию с запада на восток (правда, со скоростью всего лишь 20 км в час).

В сентябре 2014 года автомобилю Stella на удалось проехать маршрут от Лос-Анджелеса до Сан-Франциско, а это 560 км. Солнцемобиль, разработанный группой из голландского Университета Эйндховена, оснащён панелями, собирающими солнечную энергию, и 60-килограммовым блоком батарей ёмкостью шесть киловатт-часов. Stella имеет среднюю скорость 70 км в час. При отсутствии солнечного света запаса батарей хватает на 600 км. В октябре 2014 года студенты из Эйндховена на своей чудо-машине приняли участие в World Solar Challenge — 3000-километровой ралли по Австралии для машин на солнечных батареях.

Самым скоростным электрокаром на солнечных батареях на данный момент является Sunswift, созданный командой студентов из австралийского Университета Нового Южного Уэльса. На испытаниях в августе 2014 года этот солнцемобиль на одном заряде аккумулятора преодолел 500 километров с потрясающей для такого транспорта средней скоростью 100 км в час.


Биодизель на кулинарных отходах

В 2011 году Министерство сельского хозяйства США вместе с Национальной лабораторией возобновляемых видов энергии проводило исследование альтернативных типов топлива. Одним из удивительных результатов стал вывод о перспективности использования биодизельного топлива на основе сырья животного происхождения. Биодизель из остатков жиров — технология еще не слишком развитая, но уже используемая в азиатских странах.

Каждый год в Японии после приготовления национального блюда, тэмпура, остается приблизительно 400 тысяч тонн использованного кулинарного жира. Раньше он перерабатывался в корм для животных, удобрения и мыло, однако в начале 1990-х годов экономные японцы нашли ему еще одно применение, наладив на его основе производство растительного дизельного топлива.

По сравнению с бензином такой нестандартный вид автозаправки выделяет в атмосферу меньшее количество окиси серы — главной причины кислотных дождей — и на две трети сокращает количество других ядовитых выбросов выхлопных газов. Чтобы сделать новое топливо более популярным, его производители придумали любопытную схему. Каждому, кто пришлет на завод по выработке РДТ десять партий пластмассовых бутылок с использованным кулинарном жиром, выделяется 3,3 квадратных метра леса в одной из японских префектур.

До России технология в таком объеме еще не дошла, а зря: ежегодное количество отходов российской пищевой промышленности составляет 14 млн тонн, что по своему энергетическому потенциалу эквивалентно 7 млн тонн нефти. В России пущенные на биодизель отходы закрыли бы потребность транспорта на 10 процентов.


Жидкий водород

Жидкий водород уже давно считается одним из главных видов топлива, способных бросить вызов бензину и дизелю. Транспортные средства на водородном топливе не являются редкостью, но в силу многих факторов так и не завоевали широкую популярность. Хотя в последнее время благодаря новой волне озабоченности «зелеными» технологиями идея водородного двигателя приобрела новых сторонников.

Сразу несколько крупных производителей сейчас имеют в своем модельном ряду машины с водородным двигателем. Один из самых известных примеров - BMW Hydrogen 7, автомобиль с двигателем внутреннего сгорания, который может работать и на бензине, и на жидком водороде. BMW Hydrogen 7 имеет бензиновый бак на 74 литра и резервуар для хранения 8 кг жидкого водорода.

Таким образом, автомобиль может использовать оба вида топлива во время одной поездки: переключение с одного типа горючего на другое происходит автоматически, при этом предпочтение отдается водороду. Таким же типом двигателя оснащен, например, гибридный водородно-бензиновый автомобиль Aston Martin Rapide S. В нем двигатель может работать на обоих видах топлива, а переключение между ними осуществляет интеллектуальная система оптимизации расхода и выбросов вредных веществ в атмосферу.

Водородное топливо собираются осваивать и другие авто-гиганты - Mazda, Nissan и Toyota. Считается, что жидкий водород экологически безопасен, так как при горении в среде чистого кислорода не выделяет никаких загрязняющих веществ.


Зеленые водоросли

Водорослевое топливо — экзотичный способ получения энергии для автомобиля. Рассматривать водоросли в качестве биотоплива стали, прежде всего, в США и Японии.

Япония не обладает большим запасом плодородных земель для выращивания рапса или сорго (которые используются в других странах для получения биотоплива из растительных масел). Зато Страна Восходящего Солнца добывает огромное количество зеленых водорослей. Раньше их употребляли в пищу, а сейчас на их основе стали делать заправку для современных автомобилей. Не так давно в японском городе Фудзисава на улицах появился пассажирский автобус DeuSEL от компании Isuzu, который передвигается на топливе, часть которого получена на основе водорослей. Одним из главных элементов стала эвглена зеленая.

Сейчас «водорослевые» добавки составляют всего несколько процентов от общей массы топлива в транспортных баках, но в будущем азиатская компания-производитель обещает разработать двигатель, который позволит использовать биосоставляющую на все 100 процентов.

В США тоже плотно занялись вопросом биотоплива на базе водорослей. Сеть заправок Propel в Северной Калифорнии начала продажи биодизеля Soladiesel всем желающим. Топливо получают из водорослей путем их сбраживания и последующего выделения углеводородов. Изобретатели биотоплива обещают двадцатипроцентное уменьшение выбросов углекислоты и заметное снижение токсичности по другим показателям.

Московское правительство решило возложить функции по распространению экологических видов топлива и источников энергии на автомобильном транспорте города, на определенные автопредприятия. , которого не сильно отличается от бензина, менее практично, нежели альтернативные виды топлив.

Предприятия осуществляли работу на уже экспериментальных образцах автомобилей, которые приспособлены к использованию компримированного природного газа, то есть метана.

Половина всех автомобилей имеющихся в автопарке предприятия, работают на альтернативных видах горючего.

До этого момента в городах России такая техника никогда не использовалась, опыт который сей час активно приобретается, позволяет получить те необходимые знания, которые создадут условия для расширения и внедрения инноваций по всех регионах страны.

В недалекие 1960-е годы почти все высокоразвитые страны имели энергетику, которая зависела от нефти. Западные страны, выигрывали за сет экспорта дешевой нефти, баррель им обходился около 5 $. Что повлекло довольно высокие . Спустя 13 лет, организацией арабских стран-экспортеров нефти, было наложено эмбарго на ввоз нефти в Соединенные штаты Америки, это произошло из-за того, что в войне Израиля с Сирией и Египтом, Северная Америка поддержала Израиль. После этого случая, те страны, которые называли себя высокоразвитыми, пришли к выводу, что действующая экономические планы уже не эффективны, нужно срочно вырабатывать новые, с учетом уже совершенно других видов топлива. Самым слабым местом, оказалась транспортная отрасль, которая использовала углеводородные виды топлива.

Другой причиной поиска альтернативы нефти, стало то, что ее добыча с каждым годом становилась все дороже, а ее запасы в недрах земли расходовались очень великими темпами, и могли вообще исчезнуть примерно через 50 лет.

Самое интересное то, что газовый двигатель совсем не новинка современности, так как он был изобретен еще в очень далеком XIX веке, инженером из Франции, Ленуаром, работал он, конечно же, на газе. В наши дни, применяя альтернативные виды топлива в автомобилях, чаще всего используют именно газ.

Не стоит путать с бытовым газом, ведь заправляя автомобиль, на заправках используют специальные компоненты пропан-бутана, это сжиженый нефтяной газ. Его использование дишевле, и экологически безопасно для окружающей среды, по сравнению с бензином. Заправку машин производят на специальных комплексах для заправки альтернативными видами топлева.

Лучшее горючее для транспортных средств.

Природный газ метан, это то, что обходит по характеристикам и бензин, и нефтяной газ. Им обычно заправляют машины те, кто хочет за те же деньги проехать вдвое, больше расстояние.

Не провоцирует нагар, моторное масло не подвергается изминениям. Поршням и цилиндрам наносится намного меньше вреда, хорошая производительная работа двигателя. Нет нагара, не разжижается моторное масло. Меньший износ поршней и цилиндров, улучшается ресурс двигателя. Масляный нагар, плюс сажа, окисляется масло, значительно понижая смазочные свойства.

Очень мало специализированых пунктов, где без проблем можно заправится. Присутствует сеть заправок. Очень много мест, где можно заправиться.

Не требует какой либо переработки, годен к использованию в первичном виде. Смесь, которая требует определенных пропорций с учетом времен года. Требуются комбинаты по переработке нефти.

Осуществляется доставка по газотранспортным путям. Привозят специальными тягачами. Так же как и пропан-бутан, доставляется на заправки в цистернах.

Разведанных залежей, должно хватить человечеству, примерно на 200 лет. Так как газ, добывают из нефти, то, его хватит примерно на 50 лет. Производится из нефти, запаси не более чем на 50 лет.

Довольно дешевый, и требует малых вложений. Имеет среднюю цену. Нестабильная себестоимость, в том плане, что с каждым годом только растет.

Дорогое оборудование, очень мало специалистов.в Российской Федерации, по монтажу и добыче, а также ремонту установок. Не дешевая стоимость оборудования. Нет нужды в дополнительном оборудовании.

Отсутствует возможность хищения метана на заправках или с баков автомобилей. Нельзя украсть с заправок. Легко можно перепродать.

Почти не меняет свои свойства при понижении температуры. Свойства падают при понижении температуры Малые изменения свойств, если температура падает.

Имеет наивысший 4 класс безопасности. Не очень безопасный, так как обладает лишь 2-м классом безопасности. Стабильная безопасность, 3-й класс.

Напрашивается вывод, метан имеет всего три недостатка, если ровнять с другими вилами топлива. Проблемы со специалистами легко решить, а дороговизна оборудования, со временем все равно окупается, за сет той же экономии. Метан это топливо, которое имеет наилучшие показатели среди других видов топлив.

Сегодня метаном можно заправлять практически все автомобили, но в 90-е годы, считалось, что он предназначен для грузовых автомобилей и автобусов. Он помещался в специальные стальные баллоны, которые выдерживали давление в 200 атмосфер. Но вес баллона в 100 килограмм, отпугивал автолюбителей, поэтому мало кто переводил своего «зверя» на это топливо. Сейчас также просто как и любое другое топливо.

Сегодня баллоны из стали заменили менее прочными композитными сплавами, надежность стала жертвой легкости, тоесть меньшего веса баллона. Баллоны, как и стальные выдерживают давление, и высокие температуры. Взрывоопасность завышена, метан способен воспламенится только тогда, когда температура достигает 600 градусов, в то время когда бензин при 250, не говоря о его парах которым достаточно и 170 градусов.

Применение в Европейских странах

Широкое применение возрастает огромными шагами. Сейчас газоболонных машин, насчитывается 10 миллионов. Россия лидер в поставках газового топлива, на западном рынке.

Современные заводы обязательно занимаются разработкой и выпуском одной или двух моделей газобалонных автомобилей Audi, Honda, Toyota и другие. Все они начинают налаживать производство автомобилей.

Энергетические преимущества были оценены разными странами, с разными экономическими обстановками. Авто, способные использовать газовое топливо, можно встретить от США, до Азии. В России, заводских газоболонных автомобилей очень мало, чаще всего можно встретить переоборудованные под газ, бензинные аналоги.

Автомобили с таким альтернативным видом топлива как газ, хорошо производят в таких странах как Германия и Чехия. Это из-за того что в первой налажена отличная заправочная инфраструктура, во второй, планируют заменить на более экономные аналоги 10% топлива. Страной, в которой уже сейчас широко используются автомобили на газовом топливе, является Италия. Более 779 тыс. ГБА, колеся просторами этой страны.

Понравилось? Лайкни нас на Facebook