Глава i. двигатель внутреннего сгорания

Cистема зажигания двигателя


К атегория:

Техническое обслуживание автомобилей

Cистема зажигания двигателя


Приборы зажигания. Для надежного получения искрового разряда при расстоянии между электродами свечи зажигания 0,5…0,7 мм и давлении сжатой в цилиндре рабочей смеси, достигающем 1,0… 1,2МПа (10… 12 кгс/см2), к электродам должен быть подведен ток напряжением не ниже 10 000… 12 000 В.

У карбюраторных двигателей отечественных автомобилей применяют систему батарейного зажигания.

В систему зажигания входят: катушка зажигания, распределитель, конденсатор, свечи зажигания, выключатель (замок) зажигания и провода. Указанные приборы и детали образуют две электрические цепи - низкого и высокого напряжения.

Действует система зажигания следующим образом. При включенном зажигании и замкнутых контактах прерывателя по цепи низкого напряжения проходит ток от аккумуляторной батареи. Цепь тока низкого напряжения, положительный выводной штырь батареи - зажим тягового реле стартера - выключатель зажигания - зажим ВКБ катушки зажигания - добавочный резистор - зажим ВК - первичная обмотка - зажим Р - подвижной контакт прерывателя - неподвижный контакт - масса - отрицательный выводной штырь батареи.

Ток низкого напряжения, протекающий по первичной обмотке катушки зажигания (первичный ток), создает в ее сердечнике магнитное поле, пронизывающее витки обеих обмоток. Когда выступ вращающегося кулачка, нажимая рычаг подвижного контакта прерывателя, отведет этот контакт от неподвижного контакта, цепь первичного тока прервется и сердечник катушки размагнитится. Вследствие этого во вторичной обмотке катушки зажигания индуцируется ЭДС, величина которой благодаря быстрому уменьшению магнитного потока в сердечнике и большому числу витков этой обмотки достигает 15…16 кВ. Под действием индуцированной во вторичной обмотке ЭДС на электродах свечи возникает искровой разряд, воспламеняющий

Когда (при средних и больших частотах вращения двигателя) система зажигания питается от генератора, в соответствующие участки цепей низкого и высокого напряжения вместо батареи входит генератор.

В момент размыкания цепи тока низкого напряжения в первичкои обмотке катушки индуцируется ЭДС самоиндукции величиной 200… ..300 В. Под ее действием в цепи низкого напряжения возникает ток самоиндукции. Поскольку направление тока самоиндукции совпадает с направлением прерванного первичного тока, он противодействует размагничиванию сердечника катушки и этим снижает напряжение вторичного тока.

Кроме того, ток самоиндукции, проходя через начинающие размыкаться контакты прерывателя, вызывает искрение между ними и быстрое подгорание контактов.

Это вредное влияние тока самоиндукции устраняет конденсатор. Возникающий в момент начала размыкания контактов прерывателя кратковременный ток самоиндукции заряжает конденсатор. Так как конденсатор включен параллельно контактам прерывателя, они почти не подгорают.

Конденсатор разряжается через первичную обмотку катушки зажигания. При этом разрядный ток конденсатора, протекая по этой обмотке в направлении, противоположном направлению первичного тока, способствует более резкому исчезновению магнитного поля, созданного первичным током, благодаря чему повышается напряжение вторичного тока.

Катушка зажигания состоит из стального корпуса, сердечника, первичной и вторичной обмоток, карболитовой крышки с центральным контактом и зажимами В К-Б, В К и Р и добавочного резистора.

Корпус катушки при помощи хомута и винтов укреплен в моторном отсеке автомобиля.Сердечник изготовлен из отдельных пластин электротехнической стали, благодаря чему ослабляются индуцируемые в нем вихревые токи. Вторичная обмотка состоит из 18…20 тыс. витков эмалированного провода диаметром 0,07…0,10 мм и намотана на картонную трубку, установленную на сердечнике. Первичная обмотка, имеющая 300…350 витков изолированного провода диаметром 0,7…0,85 мм, намотана поверх вторичной и изолирована от нее слоем специальной бумаги. Чтобы повысить надежность изоляции, обе обмотки пропитаны трансформаторным маслом. С этой же целью все свободные полости в корпусе катушки залиты специальной изоляционной массой, а у некоторых катушек зажигания (например, Б-13 автомобилей ЗИЛ-130) заполнены трансформаторным маслом.

Добавочный резистор (вариатор), включенный в цепь низкого напряжения последовательно с первичной обмоткой катушки зажигания, улучшает работу катушки зажигания при большой частоте вращения коленчатого вала двигателя, а также облегчает пуск двигателя стартером. Когда двигатель работает при малой частоте вращения, контакты прерывателя остаются замкнутыми сравнительно длительное время, и в течение него сила тока в первичной обмотке успевает достигнуть максимальной величины. При этом стальная спираль вариатора нагревается и ее электрическое сопротивление возрастает, ограничивая силу тока в первичной цепи. Во время работы при больших частотах вращения время замкнутого состояния контактов уменьшается, и сила тока в первичной обмотке не успевает возрасти до максимальной величины. Нагрев и сопротивление вариатора уменьшаются, что частично компенсирует ослабление тока в первичной обмотке. Поэтому напряжение вторичного тока остается достаточно высоким.

При пуске двигателя стартером вариатор выключается (замыкается накоротко) дополнительным реле стартера. Поэтому, несмотря на падение напряжения аккумуляторной батареи в момент включения стартера, сила тока в первичной обмотке катушки зажигания и напряжение во вторичной обмотке достаточны.

Распределитель состоит из прерывателя и собственно распределителя, объединенных в один прибор с общим приводом (рис. 37).

Прерыватель разрывает в требуемые моменты цепь первичного тока. Он состоит из чугунного корпуса, неподвижного опорного и подвижного дисков, вольфрамовых контактов, валика, кулачка, центробежного и вакуумного регуляторов опережения зажигания и октан-корректора.

Распределитель устанавливают на двигателе и крепят к нему пластиной. Валик прерывателя приводится во вращение от распределительного (у некоторых двигателей, например АЗЛК-412, от коленчатого) вала двигателя. Частота вращения валика прерывателя в два раза ниже частоты вращения коленчатого вала. Кулачок, установленный на валике сверху, связан с ним центробежным регулятором. Число выступов на боковой поверхности кулачков равно числу цилиндров двигателя.

Соединенный с массой неподвижный контакт («наковальня») и изолированный от массы качающийся рычаг («молоточек») с контактом смонтированы на подвижном диске, установленном на диске, на шариковом подшипнике. Рычаг через гибкий проводник, зажим прерывателя и наружный провод соединен с зажимом Р первичной обмотки катушки зажигания.

Действующая на рычаг пластинчатая пружина стремится удерживать контакты замкнутыми. За два оборота коленчатого вала кулачок прерывателя сделает один оборот и его выступы разомкнут контакты, а следовательно, прервут цепь тока низкого напряжения столько раз, сколько двигатель имеет цилиндров. При каждом размыкании во вторичной обмотке катушки индуцируется ток высокого напряжения.

Рис. 37. Распределитель:

Распредел ител ь служит для распределения тока высокого напряжения по свечам в соответствии с порядком работы цилиндров. Его основные части: карболитовая крышка и ротор. Крышку крепят к корпусу распределителя пружинными застежками. Чтобы ротор не провертывался относительно кулачка, его фиксируют на лыске кулачка. В гнездо центрального контакта крышки распределителя вставляют провод высокого напряжения, соединяющий распределитель со вторичной обмоткой катушки, а гнезда боковых контактов, число которых равно числу цилиндров, - провода от свечей, которые присоединяют к боковым контактам в соответствии с порядком работы цилиндров двигателя. Так, если порядок работы цилиндров 1-5-4-2-6-3-7-8 (ЗИЛ-130, 3M3-53), то провод от первой свечи присоединяют к первому по вращению ротора боковому контакту распределителя, провод от пятой свечи - ко второму контакту, от четвертой - к третьему контакту, от второй - к четвертому и т. д.

Конденсатор состоит из двух тонких алюминиевых лент (обкладок), изолированных друг от друга конденсаторной бумагой, пропитанной трансформаторным маслом. Применяют также малогабаритные конденсаторы, изготовленные из металлизированной бумаги. Роль обкладок в таких конденсаторах выполняют очень тонкие слои олова, покрытого цинком, нанесенного с одной стороны на ленты лакированной конденсаторной бумаги. Преимущество этих конденсаторов - способность самовосстанавливаться при пробое изоляции между обкладками, поскольку слой металла около места пробоя выгорает и замыкание устраняется. Алюминиевые и бумажные или металлизированные бумажные ленты свернуты в рулон и помещены в цилиндрический корпус из оцинкованной стали. Одна обкладка конденсатора соединена с его корпусом, а другая - с выводным проводом. Корпус конденсатора крепят к корпусу распределителя, а его провод - к зажиму 20, соединенному с рычагом подвижного контакта. Емкость конденсатора 0,17…0,25 мкФ.

Опережение зажигания. Искровой разряд (искра) должен появляться между электродами свечи, когда поршень несколько не доходит до ВМТ в конце сжатия, т. е. с опережением. Это необходимо, чтобы к моменту прохождения поршнем ВМТ рабочая смесь успела полностью воспламениться.

Величину опережения зажигания измеряют углом поворота коленчатого вала от момента появления искры до прихода поршня в ВМТ. Этот угол должен изменяться в зависимости от частоты вращения коленчатого вала, нагрузки двигателя и октанового числа топлива. Если угол опережения мал (позднее зажигание), двигатель не развивает полной мощности, расходует много топлива и перегревается; иногда наблюдаются вспышки в карбюраторе. При чрезмерно большом угле опережения (раннее зажигание) возникают детонационные стуки, мощность двигателя снижается, а при пуске происходят обратные удары, что особенно опасно при пользовании рукояткой.

Чем выше частота вращения коленчатого вала, тем больше должен быть угол опережения зажигания, так как за время (примерно 0,002 с), необходимое для воспламенения всего объема рабочей смеси в цилиндре, при большой частоте вращения коленчатый вал успевает повернуться на больший угол, чем при малой частоте вращения. Угол опережения зажигания при изменении частоты вращения коленчатого вала двигателя автоматически изменяет центробежный регулятор (рис. 38).

На валике прерывателя жестко укреплена ведущая пластина с грузиками, шарнирно установленными на запрессованных в пластину осях. Сверху на валик свободно надет кулачок, удерживаемый от перемещения вверх винтом, над которым в отверстие кулачка вставлена войлочная шайба. Вырезами пластина надета на штифты грузиков. Вращение валика передается кулачку через пластину, грузики, их штифты и ведомую пластину.

При малых частотах вращения коленчатого вала грузики удерживаются пружинами в близи оси валика. Когда частота вращения увеличивается, грузики по инерции расходятся (рис. 38, б). Силы упругости растягиваемых при этом пружин увеличиваются, и когда они станут достаточными для удерживания грузиков на постоянном расстоянии от оси вращения, расхождение грузиков прекратится. Каждой частоте вращения соответствует определенная степень расхождения грузиков.

Штифты расходящихся грузиков, действуя на стенки вырезов ведомой пластины, повертывают ее и кулачок прерывателя относительно валика 9 в сторону его вращения (вперед) на определенный угол, зависящий от частоты вращения. При этом выступы кулачка раньше размыкают контакты прерывателя, и угол опережения зажигания увеличивается. Угол опережения зажигания, достигаемый за счет действия центробежного регулятора опережения, составляет 0,2-0,25 рад (11-14°).

С увеличением нагрузки двигателя (степени открытия дросселя карбюратора) угол опережения зажигания должен уменьшаться, так как при этом в цилиндры поступает больше горючей смеси, давление при ее сжатии и скорость горения возрастают.

При уменьшении нагрузки угол опережения должен, наоборот, увеличиваться. Изменяется угол опережения зажигания в зависимости от нагрузки также автоматически вакуумным регулятором. Его корпус прикреплен винтами к корпусу распределителя. Между завальцованными частями корпуса регулятора зажата диафрагма из специальной ткани, соединенная тягой с подвижным диском распределителя. Трубкой, присоединенной к отверстию, полость наружной (правой) части корпуса регулятора сообщена с нижней частью смесительной камеры карбюратора, поэтому в этой полости во время работы двигателя создается разрежение.

При малой нагрузке (дроссель карбюратора прикрыт) разрежение усиливается, диафрагма выгибается вправо и тягой повертывает диск прерывателя против движения часовой стрелки (навстречу направлению вращения кулачка), В результате контакты размыкаются раньше и угол опережения зажигания увеличивается. С возрастанием нагрузки разрежение становится меньше, пружина выгибает диафрагму влево и повертывает диск по движению часовой стрелки, вследствие чего угол опережения зажигания уменьшается. В зависимости от нагрузки вакуумный регулятор опережения зажигания изменяет угол опережения на величину до 0,2 рад (11°).

Рис. 38. Центробежный регулятор опережения зажигания:
а - детали регулятора; б - действие грузиков;1 - войлочная шайба; 2 - винт; 3 - кулачок; 4 - ведомая пластина; 5 - штифт грузика; 6 - грузики; 7 - ось грузика; 3 - ведущая пластина; 9 - валик прерывателя; 10 - пружина; 11 - вырез ведомой пластины.

Высокое октановое число бензина позволяет устанавливать больший угол опережения зажигания и этим повышать мощность двигателя без появления детонации. При низком октановом числе угол опережения необходимо уменьшить. Угол опережения изменяют в зависимости от антидетонационных свойств топлива вручную при помощи октан-корректора. Он состоит из снабженной шкалой а неподвижной нижней пластины, прикрепленной винтом к головке цилиндров двигателя или корпусу привода распределителя, и жестко прикрепленной винтом к корпусу распределителя верхней пластины, имеющей заостренный выступ в, скользящий по делениям шкалы а. Пластины прижаты друг к другу винтом и, кроме того, соединены тягой, один конец которой шарнирно соединен с нижней пластиной, а другой, снабженный резьбой, пропущен через отверстие вертикально отогнутого края (отбортовки) верхней пластины. На тягу навинчены рифленые гайки, располагающиеся по обе стороны отбортовки верхней пластины.

Пределы изменения угла опережения октан-корректором составляют ± 0,21 рад (12°) от среднего (нулевого) деления шкалы, нанесенной на пластине.

Свечи зажигания. В стальном корпусе свечи (рис. 39) помещен керамический изолятор с центральным электродом. Изолятор зажат между медными кольцевыми прокладкамии укреплен путем завальцовывания верхней кромки корпуса свечи. В нижнюю часть корпуса запрессован боковой электрод. Нижняя часть центрального электрода и боковой электрод изготовлены из сплава никеля с марганцем. Между электродами должен быть зазор 0,6… …0,7 мм.

Свечу ввертывают по резьбе в отверствие головки цилиндров. Для уплотнения под заплечики ее корпуса ставят медно-асбестовую прокладку. К наконечнику присоединяют провод от распределителя.

Свечи для автомобильных двигателей имеют следующую маркировку: А11У (3M3-53), А7, 5БС (ГАЗ-24), А15Б (ЗИЛ-130). Буква вначале определяет диаметр резьбовой части корпуса: М - 18 мм; А - 14 мм. Числа указывают длину нижней части (юбки) изолятора в миллиметрах.

Рис. 39. Свеча зажигания:
1 и 2 -электроды; 3, 5 и 6 - прокладки; 4 - корпус; 7 - изолятор центрального электрода; 8 - наконечник центрального электрода.

Выключатель зажигания. Им разъединяют цепь тока низкого напряжения для остановки двигателя. Кроме того, выключатель зажигания используют для включения и выключения стартера, электрических приборов (указателя температуры воды, давления масла и уровня топлива в баке автомобиля), а иногда и для включения радиоприемника (легковые автомобили). Выключатель снабжен замком, допускающим включение только при помощи индивидуального ключа.

В корпусе выключателя (рис. 40, а) расположены: панель с зажимами AM (амперметр), КЗ (катушка зажигания), СТ (стартер), ПР (приборы) и контактами, ротор с контактной пластиной, имеющей три выступа, и шариковым фиксатором; цилиндр с запорным устройством.

Рис. 40. Выключатель зажигания:
а - устройство; б - схема положений ключа зажигания (в таблице заштрихованы зажимы, соединенные с питающим зажимом AM при различных положениях ключа);
ПР - зажимы; 1 - вращающаяся контактная пластина; 2 - неподвижный контакт; 3 - пружина ротора; 4 - цилиндр замка; 5 - хромированная гайка корпуса; 6- корпус; 7 - ротор; 8 - шариковый фиксатор ротора; 9 - панель с неподвижными контактами и зажимами.

Устройства для подавления помех радиоприему. При работе двигателя провода высокого напряжения системы зажигания излучают электромагнитные волны и этим создают помехи в работе радиоприемников, расположенных вблизи автомобиля. Уменьшения (подавления) этих помех достигают, применяя в цепях тока высокого напряжения подавительные резисторы, которые помещают в наконечнике провода, соединяющего вторичную обмотку катушки зажигания с распределителем, а также в наконечниках проводов, идущих от распределителя к свечам зажигания.

Помимо подавительных резисторов, для уменьшения помех радиоприему за последнее время применяют также провода высокого напряжения с распределенным по всей их длине (25-40 кОм на 1 м) сопротивлением, у которых вместо металлической жилы используют жилу из волокна, пропитанного токопроводящим составом, содержащим ацетиленовую сажу.

Контактно-транзисторная система зажигания. В описанной выше системе батарейного зажигания с ростом частоты вращения коленчатого вала двигателя происходит снижение напряжения во вторичной цепи, вызываемое (особенно у двигателей с большим числом цилиндров) сокращением времени замкнутого состояния контактов прерывателя, вследствие чего уменьшается магнитный поток в катушке зажигания. Этого можно было бы избежать, увеличивая ток в первичной цепи, однако такое увеличение приводит к быстрому (после 10…15 тыс. км пробега) подгоранию контактов прерывателя.

В связи с этим стала получать распространение контактно-транзисторная система, позволяющая получить более высокое вторичное напряжение, чем при обычной системе батарейного зажигания. Контактно-транзисторная система применяется, в частности, на двигателях ЗИЛ-130, 3M3-53.

Помимо приборов и деталей, входящих в обычную систему батарейного зажигания, контактно-транзисторная система имеет транзисторный коммутатор и блок добавочных резисторов. Прерыватель контактно-транзисторной системы размыкает не первичную цепь системы зажигания, а цепь сравнительно слабого (0,7 А) тока управления германиевым транзистором, являющимся основной составной частью транзисторного коммутатора. В свою очередь, транзистор прерывает более сильный ток первичной обмотки катушки зажигания. Поскольку контакты прерывателя разгружены от первичного тока, срок их службы увеличивается до 100 тыс. км и более.

Катушка зажигания Б114 контактно-транзисторной системы отличается меньшим, чем у обычных катушек, сопротивлением первичной обмотки, благодаря чему максимальный ток первичной цепи достигает 8А, тогда как в обычной катушке он не превышает 4А. Блок добавочных резисторов контактно-транзисторной системы, состоящий из двух резисторов, по 0,52 Ом каждый, включен между выключателем и катушкой. Во время пуска двигателя стартером один из этих резисторов замыкается накоротко.

Неисправности приборов зажигания. Неисправности в системе зажигания приводят к нарушению моментов воспламенения рабочей смеси в цилиндрах, перебоям в работе свечей или полному прекращению искрообразования. Основные из этих неисправностей следующие.

Прерыватель: подгорание контактов, ненормальный зазор между ними, нарушение момента размыкания контактов (слишком раннее или позднее зажигание), износ валика и втулок прерывателя.

Подгоревшие контакты прерывателя зачищают. Зазор между контактами доводят до нормального регулировкой. При нарушении правильного момента размыкания контактов уточняют установку зажигания. Изношенные валик и втулки заменяют.

Распределитель: трещины в крышке или роторе распределителя, вызывающие утечку (пробой на массу) тока высокого напряжения; изнсс или утеря угольного контакта. В этих случаях неисправные детали распределителя заменяют новыми.

Конденсатор: пробой изоляции между обкладками или обрыв выводного проводника изолированной обкладки. Признак этих неисправностей - быстрое подгорание контактов прерывателя и перебои в работе двигателя. Неисправный конденсатор заменяют.

Катушка зажигания: обрыв; междувитковые замыкания в обмотках или пробой на массу из-за появления трещин в карболитовой крышке. Катушку проверяют на специальном стенде в мастерской, неисправную заменяют.

Свечи зажигания: нарушение нормальной величины зазора между электродами; нагар на изоляторе центрального электрода, являющийся причиной утечки тока помимо искрового промежутка; трещины изолятора, вызывающие пробой тока высокого напряжения на корпус свечи.

2060 Просмотров

Запускается всего одним легким движением. Уже давно не нужно вращать ручку кривого стартера, чтобы привести ДВС в движение, да и сам запуск теперь стал более вероятен, тогда как раньше в холодное время года оживить машину было делом весьма трудоемким. Сегодня мы расскажем о незаметной глазу системе, за счет которой происходит запуск двигателя и его постоянная работа и сгорание топливной смеси. является темой данной статьи, и сегодня мы расскажем именно о ней.

Общий принцип

Система зажигания состоит всего из нескольких функциональных элементов. Все они связаны друг с другом в единую схему и тесно взаимодействуют все то время, пока двигатель внутреннего сгорания находится в рабочем состоянии и функционирует. Главная задача системы зажигания - обеспечение постоянного сгорания смеси, состоящей из бензина и воздуха. За счет горения смесь расширяется и толкает поршни ДВС, именно поэтому начинает вращаться вал и соединенные с ним ведущие колеса.

Система зажигания запитывается от аккумуляторной батареи: она снабжает распределитель, свечи, и все те элементы, которые так или иначе причастны к работе двигателя и его исправному функционированию.

Начало работы системы зажигания знаменуется поворотом механизма замка. В этот момент начинает вращаться моторчик стартера, который приводит во вращение распределитель, шкивы и валы двигателя. Также в моторном отсеке присутствует катушка зажигания, призвание которой – преобразовывать малое напряжение в большое.

Принцип работы системы зажигания таков, что сначала ток от катушки попадает на распределитель. Распределитель, который не имеет многочисленных датчиков и собственного блока управления, в свою очередь, занят тем, что распределяет усиленный импульс с катушки по всем цилиндрам, так, что именно в нужную секунду искра подается и поджигает нагнетенную заранее смесь.

Ток, который идет от механизма распределителя к двигателю, не может быть подведен к цилиндрам непосредственно. Для передачи искры в систему встраиваются свечи, которые посредством резьбового соединения вкручиваются в цилиндры и выводят в них свои электроды. Таким образом, свеча не просто передает искру, но и нагревается. Это позволяет обеспечить более эффективную и экономичную работу мотора, а также более высокий ресурс всех его составляющих.

Как устроен трамблер?

Современные системы зажигания являются бесконтактными. Они обладают большим числом датчиков и элементов управления, которые способны подстраивать характеристики системы зажигания таким образом, чтобы достигалась наибольшая эффективность работы двигателя. Тем не менее контактные и бесконтактные системы зажигания устроены по-разному, и схема их работы различна.

Механизм распределителя представляет собой цилиндр небольшого диаметра, который закрывается крышкой и имеет несколько клемм под провода. Один, центральный, провод подводится к распределителю от катушки зажигания. Еще четыре провода отводятся к свечам и имеют к ним контактную подводку. Датчики и блоки управления здесь отсутствуют, и схема работы трамблера характеризуется лишь наличием механического привода.

В нижней части механизма располагается ротор, который связан с валом ДВС посредством шестеренчатой передачи: один оборот коленчатого вала равняется по частоте одному обороту трамблера. Система зажигания устроена так, что контактная группа трамблера, привязанная к датчикам, блоку управления и свечам зажигания, вращается таким образом, что контакт, подведенный ко входному проводу, поочередно соединяется с теми, что привязываются к выходным.

В результате такой схемы работы системы зажигания и ее механизмов смесь в соответствующих цилиндрах поджигается ровно в те моменты, когда поршень достигает своей нижней мертвой точки и максимально заполнен парами топлива. Это позволяет добиться достаточно высокой эффективности , а экономия топлива весьма существенна.

Трамблер может подвергаться регулировке. За счет этого управление свечами зажигания будет производиться в более точно подобранной фазе, а эффективность работы ДВС серьезно повысится. Для настройки необходимо поворачивать крышку трамблера против или по часовой стрелке. Благодаря тому, что на ней закреплены все провода и их выходные контакты, искра, передаваемая контактом ротора, будет подаваться в смещенный момент времени, что неизбежно повлияет на работу мотора и его характеристики.

Тем не менее, как уже было сказано, в последнее время стали особенно популярны так называемые . Их механизм основывает свою работу на сигналах многочисленных датчиков. Эти датчики позволяют сделать команды управления, которые подает блок зажигания, более рациональными, не запрограммированными, а действительно тщательно подобранными и проанализированными.

Бесконтактная система зажигания лишена большего числа недостатков, которыми обладает контактная система и ее механизмы. К примеру, контакты здесь отсутствуют, и здесь вместо них выступают магнитные импульсы, которые могут передаваться «по воздуху». Благодаря этому систему попросту не нужно постоянно настраивать, изменяя зазоры контактов должным образом.

Вдобавок ко всему полностью отсутствует проблема механизма контактов, залипающих на морозе. Именно поэтому старт двигателя внутреннего сгорания на морозе стал более простым, и даже при экстремально низких температурах машина гарантированно находится в работоспособном состоянии.

Преимущества электроники

Так как уже была затронута тема, в которой обсуждалась электронная система зажигания и механизм ее действия, расскажем подробнее о том, как работает блок зажигания, как он формирует команды управления, и каким образом датчики, встроенные в мотор, позволяют прогнозировать его поведение и менять характеристики всей системы различным образом.

В основе электроники, которой наделена система зажигания, лежит электронный блок зажигания, принимающий непосредственное участие в функционировании системы зажигания. Главная задача, которую выполняет блок зажигания, - выдавать команды управления, которые будут направлены на изменение характеристик как системы, так и самого мотора.

Эти команды формируются посредством сигналов датчиков, которые располагаются в ДВС и снимают с него целый ряд показаний, за счет которых и работает система зажигания. Эти датчики, подключенные к системам двигателя внутреннего сгорания, могут оказывать влияние на характеристики авто. Кроме того, именно электронный блок зажигания, перестраивающий режимы работы системы, самостоятельно определяет такты работы ДВС и без дополнительной настройки способен понимать, когда такт ДВС завершается, и необходима подача электрического импульса.

Как устроены свечи

Схема, по которой работает система зажигания, не могла бы быть столь полной, если бы не свечи. Это не удивительно, ведь именно через них проходит ток, эквивалент силы которого равен нескольким десяткам киловольт. В связи с этим изготавливаются свечи из специальных материалов, а технология, по которой их делают, является достаточно сложной и трудоемкой.

Устройство системы зажигания таково, что в основе свечи лежат два электрода. Они всегда изготавливаются из благородных и редких материалов, которые обладают уникальными свойствами токопроводимости, и при этом практически не нагреваются. Такими материалами является платина, иридий и другие металлы. Электроды выполняются таким образом, что расстояние между ними составляет порядка 2–3 мм. Расстояние выдерживается с той целью, чтобы искра несколько задерживалась и успевала поджечь смесь полностью, не оставив несгоревших или сгоревших не полностью частиц.

Эти электроды всегда встраиваются в оболочку, которая изготавливается из диэлектрика. Это делается с той целью, чтобы ток, проходящий по электродам, не перекинулся на головку блока цилиндров и не вывел из строя те системы, которые подведены к самому ДВС. Кроме того, такой материал не подвергается нагреву, а потому металл головки блока и свеча не будут соединены термически.

Еще одной составляющей свечи является клемма. К клемме подсоединяются высоковольтные провода, которые соединяют ее с трамблером. Обычно клемма изготавливается из более недорогих проводников, наподобие меди или алюминия, однако в некоторых случаях контакты могут быть выполнены из платины или иридия.

Резюме

Система зажигания современного автомобиля устроена достаточно сложно. Однако это позволяет сделать вывод о том, что такие системы являются более долговечными и эффективными. Такие свойства позволили полностью исключить сторонние вмешательства в сложную технику и практически лишить владельца необходимости проводить настройку регулярно и следить за состоянием отдельных комплектующих и запасных частей.

Система зажигания двигателя нужна для воспроизводства токов повышенного значения и раздачи его на контактные свечи воспламенения топлива. С учетом изменения оборотов коленчатого вала и нагрузок на мотор импульс высоковольтного напряжения подается к свечам в заданный период. В наше время автомобили оборудуют контактными и бесконтактными системами момента воспламенения.

Устройство контактной системы зажигания

Низковольтные токи служат источником питания и исходят от генератора и аккумулятора автомобиля.

Как правило, значение такого напряжения равно двенадцати-четырнадцати вольтам. А для воспроизводства момента искры в свечах запала нужно подать на них до двадцати тысяч вольт. Учитывая этот фактор, система воспламенения имеет в своей конструкции две различные электрические цепи. Схема системы зажигания собрана из следующих устройств и элементов: АКБ, катушки, трамблера, регуляторов опережения воспламенения вакуумного и центробежного типов, контактных свечек, электропроводов, замкового устройства включения.

Отдельные элементы системы

Для преобразования токов низкого вольтажа в высокие в конструкции предусмотрена установка устройства катушки зажигания. Расположена она в подкапотном пространстве, как и большая часть элементов и механизмов воспламенения. Главный способ работы таковой следующий: по виткам обмотки не высокого вольтажа проходят электротоки, и в этот момент около обмотки преобразуется магнитное поле. В том случае, если прекратить подачу напряжения в витках, исчезнувшее магнитное поле возбуждает токи уже непосредственно в витках высокого напряжения. Процесс преобразования двенадцати вольт в двадцать тысяч происходит за счет разности витков в обмотках катушек. Именно такой высокий показатель напряжения необходим для образования искры между контактами свечей.

Работа прерывателя

Правильная работа системы зажигания невозможна без такого механизма, как прерыватель токовых напряжений не высоких показателей. Его работа заключается в том, чтобы прерывать токи в обмотках малого напряжения. Это, в свою очередь, способствует образованию высокого напряжения.

Далее ток направляется на основной контакт, расположенный под крышкой устройства распределителя. Гибкая пружина передвижного контакта все время прижимает его к неподвижному элементу, а расходятся они лишь на короткий промежуток времени. Это происходит в момент, когда кулачок валика привода механизма прерывателя воздействует на молоточек передвижного контакта.

Конденсатор

Чтобы исключить факт подгорания контактов в момент их размыкания, к ним параллельно подключен конденсатор. В период расхождения контактов механизма распределителя между кулачками возможно искрообразование. В этом случае конденсатор служит для поглощения большей части электроэнергии и сводит возможность образования искры к минимуму. Дополнительно он сопутствует увеличению напряжения во вторичных витках обмотки катушки. В момент срабатывания контактов прерывателя конденсирующее устройство отдает свой ток и таким образом создает обратные токи в цепи низкого напряжения. Это способствует ускорению исчезновения магнитных полей. И чем скорее это произойдет, тем выше будут токи в линии высоких напряжений. В том случае, когда конденсатор трамблера выйдет из строя, мотор также не будет запускаться и работать. Параметры напряжения витков будут слишком малы для возникновения оптимального искрообразования. Искра между электродами свечи будет «бедной», а этого недостаточно для воспламенения топливной смеси. Контакты прерывателя низких токов и распределитель высоких напряжений установлены в корпусе трамблера и приводятся в действие за счет коленчатого вала мотора.

Крышка трамблера

Раздача высокого напряжения на свечи цилиндров силового агрегата осуществляется за счет распределительной крышки трамблера. После образования в катушке токов высоких показателей они поступают на основной контакт колпака распределителя-прерывателя, а уже затем, через подвижной элемент, на пластину ротора. В то время, когда ротор вращается, напряжение проскакивает с пластины на контакты распределительной крышки.

Затем короткие импульсы по бронепроводам высокого напряжения поступают непосредственно на Контакты распределительной крышки имеют определенную нумерологию, которая соответствует определенному цилиндру двигателя.

Именно так и устанавливается момент работы цилиндров. Определенный порядок работы предусматривает равномерное распределение нагрузки на коленвал. В основном четырехцилиндровые моторы имеют следующий порядок работы: 1-3-4-2. Но он может несущественно изменяться в зависимости от производителя. В данном случае формула порядка работы означает, что изначально воспламенение происходит в первом цилиндре, затем в третьем, четвертом и втором. При этом система зажигания двигателя предусматривает подачу напряжения на свечи в момент окончания такта сжатия. Это происходит за счет установки

Опережение момента искрообразования необходимо из-за высокой скорости перемещения поршней в цилиндрах. В том случае, когда топливная смесь будет воспламеняться несколько позже или раньше предусмотренного, коэффициент полезного действия расширяющихся газов значительно снизится. Поэтому воспламенение топлива должно осуществляться в заданный момент, когда поршень подходит к ВМТ. При правильно установленном угле опережения на поршень будет воздействовать оптимальное количество газов, необходимое для нормальной работы двигателя. Угол опережения выставляется путем проворачивания корпуса прерывателя. Так подбирается определенный момент, когда контакты прерывателя разводятся.

Регулятор центробежный

Центробежный регулятор обеспечивает установку правильного угла опережения воспламенения в зависимости от оборотов двигателя. Конструкция механизма регулятора представляет собой пару грузов, которые вращаясь, воздействуют на пластину с контактами прерывателя.

Вакуумный регулятор

В зависимости от степени нагрузки на двигатель момент образования искры корректируется вакуумным регулятором. Это устройство монтируется на корпус трамблера. Вакуумный регулятор состоит из двух камер, разделенных диафрагмой. Одна камера взаимодействует с атмосферой, а вторая при помощи патрубка с емкостью дросселя. При помощи штока диафрагма имеет соединение с пластиной, которая оснащена контактами прерывателя.

С увеличением угла поворота дроссельной заслонки происходит уменьшение разряжения в полости дросселя. При этом диафрагма перемещает пластину на незначительный угол совместно с контактами по направлению к кулачку привода прерывателя. Исходя из этого, размыкание происходит с задержкой, и, соответственно, меняется угол.

Свечи искрообразования (система зажигания контактная)

Система зажигания оснащена стандартными элементами запала. Контактные элементы искрообразования нужны для преобразования электрической энергии в искру, для воспламенения топливной смеси в цилиндрах двигателя. В тот период, когда электрический импульс передается на свечи, ее контакты способствуют образованию искрового пробоя. Эта деталь является неотъемлемым элементом системы зажигания.

Бронепровода

Система зажигания контактная, система зажигания других типов в своем комплекте имеют оснащение бронепроводами, которые могут без повреждений и потерь пропускать через себя высоковольтное напряжение. В частности это электрический гибкий провод, с одной медной жилой и многослойной изоляцией.

При этом контактный провод выполнен в форме спирали, что исключает радиопомехи. Как правило, данные провода устанавливаются на свечи. При длительном использовании изоляция проводов может приобрести микротрещины, через которые возможны потери импульсов высоких значений.

Неисправности системы зажигания и их устранение

Первой и наиболее распространенной поломкой может быть отсутствие искры на свечах. Причинами такой неисправности могут служить следующие моменты:

  • Обрыв электропроводов в цепи низкого напряжения или же окисление их соединительных контактов.
  • Подгорание контактов распределителя и их разрегулировка.
  • Выход из строя катушки, перегорание конденсатора, дефекты крышки распределителя, повреждение бронепроводов и самих свечей.
  • Излишняя влага в устройствах.

Устранение неисправностей возможно следующим методом:

  • Проверка контрольно-измерительным прибором всей цепи и проводки.
  • Очистка контактов трамблера от нагара и регулировка зазора.
  • Замена неисправных и подозрительного состояния деталей системы.

Случается, что когда проворачивается ключ зажигания, не срабатывает стартер, а все системы визуально работают, в этом случае необходимо обратить внимание на блок предохранительных элементов, так как возможно перегорание или окисление посадочного места предохранителя, отвечающего за включение стартера.

Если двигатель автомобиля работает нестабильно и не развивает полной мощности, то причины могут крыться в следующем:

  • Выход из строя одной из свечей зажигания.
  • Слишком большой или, наоборот, маленький зазор на свечах и контактах распределителя.
  • Механическое повреждение ротора или крышки трамблера.
  • Неверно установлен угол опережения.

Ремонт заключается в следующем:

  • Установка новых деталей.
  • Регулировка необходимых зазоров.
  • Регулировка угла искрообразования.

Схема контактной системы зажигания довольно проста и широко применяется на различных автомобилях.

С применением новых технологий элементов зажигания автомобили постоянно усовершенствуются и модифицируются. К примеру, более новые модели машин различных производителей давно применяют электронные системы зажигания. При появлении неполадок в системе можно легко определить причину их возникновения и провести ремонт. Контактная система зажигания автомобиля ВАЗ не имеет кардинальных отличий от элементов иных производителей и обладает высокой эксплуатационной надежностью. При этом недорога в ремонте.

Контактно-транзисторная система

По сравнению с обычной контактной системой контактно-транзисторная имеет в своем оснащении транзистор. Применение его способствует улучшению рабочих характеристик и показателей. С установкой транзистора систему стали оснащать коммутатором.

Устройство контактно-транзисторной системы зажигания не сильно отличается от обычного зажигания и его принципа работы. Но все же она имеет некоторые незначительные отличия.

Ее главной отличительной особенностью является возможность воздействия прерывателя на устройство транзистора, а не на обмотку катушки. Во время прерывания токов в обмотке низкого напряжения в витках обмотки высокого напряжения происходит его образование.

Контактная система зажигания (ВАЗа в том числе) имеет ряд положительных характеристик.

Управление процессами, которые присущи катушке зажигания, способствует возможности повышения значений токов в первичной витковой обмотке, а в результате этого возможно:

  • Увеличение значений вторичного напряжения.
  • Увеличение зазоров между электродами свечей.
  • Улучшение и более стабильный момент искрообразования.
  • Облегчить запуск мотора в холодное время года.
  • Увеличение оборотов и мощности двигателя.

Подобная контактно-транзисторная система зажигания, предусматривает подключение катушки с отдельной первичной и вторичной обмотками.

При этом данная система снижает нагрузку на контакты прерывателя и уменьшает риск их подгорания. Это возможно из-за уменьшения показателей проходящих токов. Благодаря этому факту повышается степень надежности и долговечности всей системы.

К недостаткам такого зажигания можно отнести следующее: напряжение токов, поступающих к транзистору, оказывает значительное влияние на его работу. Понижение показаний токов, связанных с состоянием контактов прерывателя, сильно влияет на эксплуатационные показатели контактно-транзисторного зажигания. Неисправности системы зажигания данного типа идентичны неисправностям обычной контактной системы и устраняются таким же образом. Но дополнительно могут возникнуть проблемы с нарушением нормальной работы транзистора и коммутатора.

Система запуска двигателя

Запуск двигателя невозможно осуществить без дополнительных электронных устройств. В данном контексте речь пойдет о таком механизме, как стартер автомобиля. Этот механизм представляет собой электродвигатель, который приводит в первоначальное движение коленчатый вал мотора до момента воспламенения в цилиндрах и пуска двигателя. В работу стартер включается поворотом ключа в замке в соответствующее положение. Токи через реле зажигания поступают от аккумулятора к виткам стартера и приводят его в действие.

Если рассматривать подробно, то процесс пуска двигателя производится в три этапа:

  1. Втягивающий механизм стартера заводит пусковую шестерню в зацепление с венцом маховика.
  2. Далее происходит вращение ротора стартера совместно с приводной шестерней, а та, в свою очередь, передает крутящий момент на коленчатый вал, что приводит к запуску силового агрегата.
  3. После того как двигатель запускается, а ключ зажигания возвращается в исходное положение, втягивающий механизм выводит приводную шестерню стартера из зацепления с маховиком.

Назначение реле

Любое электрическое реле - это предохранительное устройство, которым оснащается система зажигания. Контактная система зажигания в этом плане тоже не исключение. Основным его назначением является размыкание и замыкание разнообразных участков в электрических цепях автомобиля. Устройства имеют различия по конструкции и способу управляющего сигнала, а также по установке. В данный момент широкое применение получили

Говоря простыми словами, этот вид электрооборудования авто предохраняет различные элементы от высоких токовых нагрузок. Попросту оно служит переключателем. В частности в системе зажигания реле предохраняет стартер автомобиля и генератор от воздействия на них высоких токов. К примеру, для запуска двигателя нужно провернуть и включить стартер в работу, который, в свою очередь, потребляет от 80 до 300А.

В этом случае если не использовать реле, то замок может сгореть, а также и некоторые элементы проводки. Для того чтобы этого не произошло, в систему включают реле зажигания. Когда на корпусе устройства имеется изображение значка диода, то это означает, что при его подключении важно соблюдать полярность клемм. В противном случае поломка неизбежна.

Заключение

В итоге стоит отметить, что первой, получившей широкое распространение на автомобильном рынке, была система зажигания контактная. Система зажигания эта использовалась достаточно уверенно, но на данный момент считается морально устаревшей. Самым слабым местом ее как раз и оказалось наличие в конструкции трамблера контактной пары. Ведь она требовала периодического обслуживания, сводившегося к потребности в проверке и регулировке зазора между контактами, чистке поверхности контактов от различного рода следов подгорания, которые могли значительно повлиять на работоспособность элементов в целом. На смену данной системе пришла бесконтактная, которая таких обслуживающих работ не требует и характеризуется автомобилистами как более надежная.

Итак, мы выяснили, какой имеет принцип работы контактно-транзисторная система зажигания автомобиля.

В данной статье расскажем про электронное зажигание для автомобиля. Покажем схему электронного зажигания.

В 90-е годы у меня был автомобиль ВАЗ-2101, Фиатовской сборки, который мне достался от моего деда. Качество автомобиля было таким, что после перегрева двигателя с лопанием компрессионных колец и 90 километрового возвращения до дома, при капитальном ремонте этого двигателя даже не потребовалась расточка блока цилиндров. Поверхности цилиндров при 200 000 пробеге были идеальными. При расходе 7 литров на 100 километров пути, на трассе моей «копейке» не хватало пятой передачи. Один был существенный недостаток – канифолила мозги контактная система зажигания. Уж слишком часто нагорали контакты прерывателя. Покопавшись в радиолюбительской литературе я нашел то, чего моей «ласточке» не хватало – схему электронного зажигания. После установки этой схемы на автомобиль, расход уменьшился до 6,5 литров на 100 километров пути, а проблем с перебоями зажигания не стало. Я давно уже пересел на японца, а вот мой отец – фанат «классики» никогда от неё не отказывался. А сколько по стране ещё бегает Жигулёнков? Схему электронного зажигания, которую я собирал на свою «копейку», я давно уже потерял, но нашёл другую схему, которая почти не отличалась от моей. После некоторой доработки, я собрал для отца предлагаемую ниже схему и что замечательно, у него расход топлива тоже упал приблизительно на 0,5 литра.

Предлагаемая схема электронного зажигания предназначена для установки на автомобили только с контактной системой зажигания.

Схема, установленная к стандартной системе контактного зажигания, имеет следующие преимущества:

  • не обгорают контакты прерывателя;
  • предусмотрена схема защиты катушки зажигания от возможного сгорания в результате длительного включения зажигания без вращения двигателя;
  • искра формируется в колебательном режиме, другими словами формируется несколько коротких импульсов, что улучшает качество сгорания паров бензина в цилиндрах ДВС.

Рассмотрим работу схемы электронного зажигания:

При замыкании и размыкании контактов прерывателя SK импульс проходит через С1, кратковременно открывая VT1, VT2 и VT3. При закрывании VT3 возникает искра. С3 немного сглаживает пик импульса высокого напряжения появляющегося между коллектором и эмиттером VT3, защищая его от пробоя. Когда в результате самоиндукции катушки зажигания и заряда С3 напряжение между коллектором и эмиттером достигнет порядка 230 вольт, происходит первичный пробой диода VD3. В результате этого, ток снова пойдёт через первичную обмотку катушки. С3 обеспечивает кратковременную задержку закрывания диода VD3, позволяя насытиться катушке зажигания. Когда диод закрывается, возникает вторая искра, которая немного слабее первой. Процесс образования искры имеет затухающий характер, может повториться несколько раз, и зависит от напряжения пробоя диода VD3 и емкости конденсатора С3. Длительность каждого импульса искрообразования короче, чем один импульс стандартной системы зажигания, а общая длительность пачки импульсов зажигания больше. В результате этого происходит многократное воспламенение паров топлива, без уменьшения срока службы свечей зажигания. Топливо сгорает лучше, уменьшается нагар свечей, что в свою очередь снижает расход бензина.

В случае длительно замкнутых контактов прерывателя, конденсатор С1 постепенно заряжается через замкнутые контакты, ток через конденсатор убывает, соответственно и транзисторы плавно закрываются, защищая катушку зажигания от возможного перегрева.

Элементы схемы: Резисторы – любые, на мощность не ниже указанной на схеме. Их номиналы могут отличаться от указанных на схеме на 20%, схема будет работать надёжно. Электролитические конденсаторы любого типа, на напряжение не ниже указанного на схеме. Диод VD1 — любой маломощный импульсный. Диод VD2 – любой маломощный выпрямительный. Диод VD3 используется и как защитный диод в цепи коллектор-эмиттер транзистора VT3, и как стабилитрон. Обратное напряжение пробоя диода VD3 равное 200…250 вольтам определяет скорость и амплитуду повторных импульсов зажигания, поэтому в качестве VD3 применимы мощные импульсные диоды 2Д213А, 2Д213Б, 2Д231 с любым индексом, 2Д245Б, или два последовательно соединённых 2Д213В. Возможно подобрать диод и другого типа, но с не худшими параметрами и указанным обратным напряжением. Транзистор VT1 – типа КТ361Б,В,Г, или КТ3107 с любой буквой. Транзистор VT2 – типа КТ315Б,Г,Е,Н, или КТ3102 с любой буквой. Транзистор VT3 – типа 2Т812А (КТ812А), можно использовать КТ912А, или КТ926А.

Прошу обратить внимание, что плюсовой вывод катушки не отключается от общего плюса системы зажигания, как может показаться на схеме, а лишь питание схемы осуществляется от 12 вольт, имеющимися на катушке зажигания. Разрывается только цепь «прерыватель — катушка зажигания». Как это реализуется изображено на следующих рисунках. На первом изображена стандартная схема зажигания, на втором — подключение схемы электронного зажигания.

Для подключения схемы электронного зажигания необходимо разорвать чёрный провод идущий от прерывателя к катушке зажигания. Прерыватель подключить на вход схемы электронного зажигания, а вывод катушки — к коллектору транзистора. Конденсатор висящий на прерывателе можно оставить, а лучше выкинуть, он почти не влияет на работу схемы. Никакие другие цепи «стандартного» зажигания не разрывают и не переключают. Необходимо только запитать схему зажигания: минус — это корпус авто, а плюс взять от другого контакта катушки зажигания (на рисунке — сине-чёрный провод). Все изменения изображены на рисунке красным цветом.

Вся схема собрана на маленькой плате размерами 3,5 х 5,0 см, помещённой в алюминиевый корпус размерами 4,0 х 6,5 х 2,5 см. Транзистор расположен непосредственно на корпусе через слюдяную прокладку. Важно обеспечить изоляцию коллектора транзистора от корпуса автомобиля (нуля). После сборки, для уменьшения расхода топлива, может понадобиться небольшая регулировка угла опережения зажигания.

Система зажигания предназначена для воспламенения топливовоздушной смеси в цилиндрах бензинового двигателя. Топливовоздушная смесь воспламеняется в камере сгорания двигателя посредством электрического разряда между , установленной в головке цилиндров. Для создания искры между электродами свечи зажигания применяют системы зажигания от магнето и батарейные системы зажигания, источниками высокого напряжения в которых являются индукционные катушки.

Рис. Схема батарейной системы зажигания

Система зажигания состоит из следующих основных элементов:

  • источник тока ИТ, функцию которого выполняет или генератор
  • выключатель ВК цепи электроснабжения (выключатель зажигания)
  • датчик Д углового положения коленчатого вала
  • регуляторы момента зажигания РМЗ, которые задают определенный момент подачи высокого напряжения на свечу в зависимости от частоты вращения коленчатого вала, разрежения Δрк во впускном трубопроводе и октанового числа бензина
  • источник высокого напряжения ИВН, содержащий промежуточный накопитель энергии НЭ и преобразователь низкого напряжения в высокое
  • силовое реле СР, в качестве которого могут служить механические контакты прерывателя или электронный ключ (транзистор или тири­стор)
  • распределитель Р импульсов высокого напряжения по свечам
  • помехоподавительные устройства ПП (экранирующие элементы системы зажигания или помехоподавительные резисторы)
  • свечи зажигания СВ, на которые подается высокое вторичное напряжение

В батарейной системе зажигания источником энергии является аккумуляторная батарея или генератор (в зависимости от режима работы двигателя). принципиально отличается от батарейной тем, что источник электроэнергии в ней - магнитоэлектрический генератор, конструктивно объединенный с индукционной катушкой. Система зажигания от магнето в настоящее время на автомобилях практически не применяется, однако находит применение на пусковых бензиновых двигателях тракторных дизелей.

Система зажигания обеспечивает генерацию импульсов высокого напряжения в нужный момент времени на тактах сжатия в цилиндрах двигателя и их распределение по цилиндрам в соответствии с порядком их работы. Момент зажигания характеризуется углом опережения зажигания УОЗ, который представляет собой угол поворота коленчатого вата от положения в момент подачи искры до положения, когда поршень проходит через верхнюю мертвую точку ВМТ.

Электрическая искра вызывает появление в ограниченном объеме топливовоздушной смеси первых активных центров, от которых на­чинается развитие химической реакции оксидирования топлива, со­провождающейся выделением теплоты. Процесс сгорания рабочей смеси разделяют на три фазы:

  • начальная, в которой формируется пламя, инициированное ис­кровым разрядом в свече
  • основная, в которой пламя распространяется на большую часть камеры сгорания
  • конечная, в которой пламя догорает у стенок цилиндра

Рис. Система зажигания с накоплением энергии:
а - в магнитном поле; б - в электрическом поле

Для бесперебойного искрообразования на свечу зажигания необходимо подать напряжение до 30 кВ.

Высокий уровень напряжения обеспечивает промежуточный источник энергии. По способу накопления энергии в промежуточном источнике различают системы с накоплением энергии в магнитном поле (в индуктивности) или в электрическом поле конденсатора (в емкости). В обоих случаях для получения импульса высокого напряжения используется катушка зажигания, представляющая собой трансформатор (или автотрансформатор), содержащий две обмотки: первичную L1 с малым числом витков и электросопротивле­нием в доли и единицы ома и вторичную обмотку L2 с большим числом витков и сопротивлением в единицы и десятки килоом.

Автотрансформаторная связь обмоток упрощает конструкцию и технологию изготовления катушки, а также несколько увеличивает вторичное напряжение. Коэффициент трансформации катушек зажигания находится в пределах 50-225.

В системах зажигания с накоплением энергии в катушках зажигания (в индуктивности) первичная обмотка L1 катушки подключается к источнику электроснабжения последовательно через механический или электронный прерыватель S2. В системах зажигания с накоплением энергии в электрическом поле конденсатора (в емкости) первичная обмотка катушки периодически подключается к конденсатору управляемым электронным переключателем S2. Конденсатор предварительно за­ряжается от источника электроснабжения на автомобиле через статический преобразователь напряжения.

Понравилось? Лайкни нас на Facebook