Какие бывают системы впрыска. Системы впрыска топлива в двигатель. Недостатки центрального впрыска

В конце 60х-начале 70х годов ХХ века остро встала проблема загрязнения окружающей среды промышленными отходами, среди которых значительную часть составляли выхлопные газы автомобилей. До этого времени состав продуктов сгорания двигателей внутреннего сгорания никого не интересовал. В целях максимального использования воздуха в процессе сгорания и достижения максимально возможной мощности двигателя состав смеси регулировался с таким расчетом, чтобы в ней был избыток бензина.

В результате в продуктах сгорания совершенно отсутствовал кислород, однако оставалось несгоревшее топливо, а вредные для здоровья вещества образуются главным образом при неполном сгорании. В стремлении повышать мощность конструкторы устанавливали на карбюраторы ускорительные насосы, впрыскивающие топливо во впускной коллектор при каждом резком нажатии на педаль акселератора, т.е. когда требуется резкий разгон автомобиля. В цилиндры при этом попадает чрезмерное количество топлива, не соответствующее количеству воздуха.

В условиях городского движения ускорительный насос срабатывает практически на всех перекрестках со светофорами, где автомобили должны то останавливаться, то быстро трогаться с места. Неполное сгорание имеет место также при работе двигателя на холостых оборотах, а особенно при торможении двигателем. При закрытом дросселе воздух проходит через каналы холостого хода карбюратора с большой скоростью, всасывая слишком много топлива.

Из-за значительного разрежения во впускном трубопроводе в цилиндры засасывается мало воздуха, давление в камере сгорания остается к концу такта сжатия сравнительно низким, процесс сгорания чрезмерно богатой смеси проходит медленно, и в выхлопных газах остается много несгоревшего топлива. Описанные режимы работы двигателя резко повышают содержание токсических соединения в продуктах сгорания.

Стало очевидно, что для понижения вредных для жизнедеятельности человека выбросов в атмосферу надо кардинально менять подход к конструированию топливной аппаратуры.

Для снижения вредных выбросов в систему выпуска было предложено устанавливать каталитический нейтрализатор отработавших газов. Но катализатор эффективно работает только при сжигании в двигателе так называемой нормальной топливо-воздушной смеси (весовое соотношение воздух/бензин 14,7:1). Любое отклонение состава смеси от указанного приводило к падению эффективности его работы и ускоренному выходу из строя. Для стабильного поддержания такого соотношения рабочей смеси карбюраторные системы уже не подходили. Альтернативой могли стать только системы впрыска.

Первые системы были чисто механическими с незначительным использованием электронных компонентов. Но практика использования этих систем показала, что параметры смеси, на стабильность которых рассчитывали разработчики, изменяются по мере эксплуатации автомобиля. Этот результат вполне закономерен, учитывая износ и загрязнение элементов системы и самого двигателя внутреннего сгорания в процессе его службы. Встал вопрос о системе, которая смогла бы сама себя корректировать в процессе работы, гибко сдвигая условия приготовления рабочей смеси в зависимости от внешних условий.

Выход был найден следующий. В систему впрыска ввели обратную связь – в выпускную систему, непосредственно перед катализатором, поставили датчик содержания кислорода в выхлопных газах, так называемый лямбда-зонд. Данная система разрабатывалась уже с учетом наличия такого основополагающего для всех последующих систем элемента, как электронный блок управления (ЭБУ). По сигналам датчика кислорода ЭБУ корректирует подачу топлива в двигатель, точно выдерживая нужный состав смеси.

На сегодняшний день инжекторный (или, говоря по-русски, впрысковый) двигатель практически полностью заменил устаревшую
карбюраторную систему. Инжекторный двигатель существенно улучшает эксплуатационные и мощностные показатели автомобиля
(динамика разгона, экологические характеристики, расход топлива).

Инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:

  • точное дозирование топлива и, следовательно, более экономный его расход.
  • снижение токсичности выхлопных газов. Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов.
  • увеличение мощности двигателя примерно на 7-10%. Происходит за счет улучшения наполнения цилиндров, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя.
  • улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки, корректируя параметры топливно-воздушной смеси.
  • легкость пуска независимо от погодных условий.

Устройство и принцип работы (на примере электронной системы распределенного впрыска)


В современных впрысковых двигателях для каждого цилиндра предусмотрена индивидуальная форсунка. Все форсунки соединяются с топливной рампой, где топливо находится под давлением, которое создает электробензонасос. Количество впрыскиваемого топлива зависит от продолжительности открытия форсунки. Момент открытия регулирует электронный блок управления (контроллер) на основании обрабатываемых им данных от различных датчиков.

Датчик массового расхода воздуха служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.

Датчик положения дроссельной заслонки служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, оборотов двигателя и циклового наполнения.

Датчик температуры охлаждающей жидкости служит для определения коррекции топливоподачи и зажигания по температуре и для управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя.

Датчик положения коленвала служит для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ – полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный “жизненно важный” в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.

Датчик кислорода предназначен для определения концентрации кислорода в отработавших газах. Информация, которую выдает датчик, используется электронным блоком управления для корректировки количества подаваемого топлива. Датчик кислорода используется только в системах с каталитическим нейтрализатором под нормы токсичности Евро-2 и Евро-3 (в Евро-3 используется два датчика кислорода- до катализатора и после него).

Датчик детонации служит для контроля за детонацией. При обнаружении последней ЭБУ включает алгоритм гашения детонации, оперативно корректируя угол опережения зажигания.

Здесь перечислены только некоторые основные датчики, необходимые для работы системы. Комплектации датчиков на различных автомобилях зависят от системы впрыска, от норм токсичности и пр.

Про результатам опроса определенных в программе датчиков, программа ЭБУ осуществляет управление исполнительными механизмами, к которым относятся: форсунки, бензонасос, модуль зажигания, регулятор холостого хода, клапан адсорбера системы улавливания паров бензина, вентилятор системы охлаждения и др. (все опять же зависит от конкретной модели)

Из всего перечесленного, возможно, не все знают, что такое адсорбер. Адсорбер является элементом замкнутой цепи рециркуляции паров бензина. Нормами Евро-2 запрещен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг. На неработающем двигателе пары бензина попадают в адсорбер из бака и впускного коллектора, где происходит их поглощение. При запуске двигателя адсорбер по команде ЭБУ продувается потоком воздуха, всасываемого двигателем, пары увлекаются этим потоком и дожигаются в камере сгорания.

Типы систем впрыска топлива

В зависимости от количества форсунок и места подачи топлива, системы впрыска подразделяются на три типа: одноточечный или моновпрыск (одна форсунка во впускном коллекторе на все цилиндры), многоточечный или распределенный (у каждого цилиндра своя форсунка, которая подает топливо в коллектор) и непосредственный (топливо подается форсунками непосредственно в цилиндры, как у дизелей).

Одноточечный впрыск проще, он менее начинен управляющей электроникой, но и менее эффективен. Управляющая электроника позволяет снимать информацию с датчиков и сразу же менять параметры впрыска. Немаловажно и то, что под моновпрыск легко адаптируются карбюраторные двигатели почти без конструктивных переделок или технологических изменений в производстве. У одноточечного впрыска преимущество перед карбюратором состоит в экономии топлива, экологической чистоте и относительной стабильности и надежности параметров. А вот в приёмистости двигателя одноточечный впрыск проигрывает. Еще один недостаток: при использовании одноточечного впрыска, как и при использовании карбюратора до 30% бензина оседает на стенках коллектора.

Системы одноточечного впрыска, безусловно, являлись шагом вперед по сравнению с карбюраторными системами питания, но уже не удовлетворяют современным требованиям.

Более совершенными являются системы многоточечного впрыска , в которых подача топлива к каждому цилиндру осуществляется индивидуально. Распределенный впрыск мощнее, экономичнее и сложнее. Применение такого впрыска увеличивает мощность двигателя примерно на 7-10 процентов. Основные преимущества распределенного впрыска:

  • возможность автоматической настройки на разных оборотах и соответственно улучшение наполнения цилиндров, в итоге при той же максимальной мощности автомобиль разгоняется гораздо быстрее;
  • бензин впрыскивается вблизи впускного клапана, что существенно снижает потери на оседание во впускном коллекторе и позволяет осуществлять более точную регулировку подачи топлива.

Как очередное и эффективное средство в деле оптимизации сгорания смеси и повышения КПД бензинового двигателя реализует простые
принципы. А именно: более тщательно распыляет топливо, лучше перемешивает с воздухом и грамотней распоряжается готовой смесью на разных режимах работы двигателя. В итоге двигатели с непосредственным впрыском потребляют меньше топлива, чем обычные «впрысковые» моторы (в особенности при спокойной езде на невысокой скорости); при одинаковом рабочем объеме они обеспечивают более интенсивное ускорение автомобиля; у них чище выхлоп; они гарантируют более высокую литровую мощность за счет большей степени сжатия и эффекта охлаждения воздуха при испарении топлива в цилиндрах. В то же время они нуждаются в качественном бензине с низким содержанием серы и механических примесей, чтобы обеспечить нормальную работу топливной аппаратуры.

А как раз главное несоответствие между ГОСТами, ныне действующими в России и Украине, и евростандартами- повышенное содержание серы, ароматических углеводородов и бензола. Например, российско-украинский стандарт допускает наличие 500 мг серы в 1 кг топлива, тогда как “Евро-3”- 150 мг, «Евро-4»- лишь 50 мг, а «Евро-5»- всего 10 мг. Сера и вода способны активизировать коррозионные процессы на поверхности деталей, а мусор является источником абразивного износа калиброванных отверстий форсунок и плунжерных пар насосов. В результате износа снижается рабочее давление насоса и ухудшается качество распыления бензина. Все это отражается на характеристиках двигателей и равномерности их работы.

Первой применила двигатель с непосредственным впрыском на серийном автомобиле компания Mitsubishi. Поэтому рассмотрим устройство и принципы действия непосредственного впрыска на примере двигателя GDI (Gasoline Direct Injection). Двигатель GDI может работать в режиме сгорания сверхобедненной топливовоздушной смеси: соотношение воздуха и топлива по массе до 30-40:1.

Максимально возможное для традиционных инжекторных двигателей с распределенным впрыском соотношение равно 20-24:1 (стоит напомнить, что оптимальный, так называемый стехиометрический, состав – 14,7:1) – если избыток воздуха будет больше, переобедненная смесь просто не воспламенится. На двигателе GDI распыленное топливо находится в цилиндре в виде облака, сосредоточенного в районе свечи зажигания.

Поэтому, хотя в целом смесь переобедненная, у свечи зажигания она близка к стехиометрическому составу и легко воспламеняется. В то же время, обедненная смесь в остальном объеме имеет намного меньшую склонность к детонации, чем стехиометрическая. Последнее обстоятельство позволяет повысить степень сжатия, а значит увеличить и мощность, и крутящий момент. За счет того, что при впрыскивании и испарении в цилиндр топлива, воздушный заряд охлаждается – несколько улучшается наполнение цилиндров, а также снова снижается вероятность возникновения детонации.

Основные конструктивные отличия GDI от обычного впрыска:



Топливный насос высокого давления (ТНВД). Механический насос (подобный ТНВД дизельного двигателя) развивает давление в 50 бар (у инжекторного двигателя электронасос в баке создает в магистрали давление около 3-3,5 бар).

  • Форсунки высокого давления с вихревыми распылителями создают форму топливного факела, в соответствии с режимом работы двигателя. На мощностном режиме работы впрыск происходит на режиме впуска и образуется конический топливовоздушный факел. На режиме работы на сверхбедных смесях впрыск происходит в конце такта сжатия и формируется компактный топливовоздушный
    факел, который вогнутое днище поршня направляет прямо к свече зажигания.
  • Поршень. В днище особой формы сделана выемка, при помощи которой топливо-воздушная смесь направляется в район свечи зажигания.
  • Впускные каналы. На двигателе GDI применены вертикальные впускные каналы, которые обеспечивают формирование в цилиндре т.н. “обратного вихря”, направляя топливовоздушную смесь к свече и улучшая наполнение цилиндров воздухом (у обычного двигателя вихрь в цилиндре закручен в противоположную сторону).

Режимы работы двигателя GDI

Всего предусмотрено три режима работы двигателя:

  • Режим сгорания сверхбедной смеси (впрыск топлива на такте сжатия).
  • Мощностной режим (впрыск на такте впуска).
  • Двухстадийный режим (впрыск на тактах впуска и сжатия) (применяется на евромодификациях).

Режим сгорания сверхбедной смеси (впрыск топлива на такте сжатия). Этот режим используется при малых нагрузках: при спокойной городской езде и при движении за городом с постоянной скоростью (до 120 км/ч). Топливо впрыскивается компактным факелом в конце такта сжатия в направлении поршня, отражается от него, смешивается с воздухом и испаряется, направляясь в зону свечи зажигания. Хотя в основном объеме камеры сгорания смесь чрезвычайно обеднена, заряд в районе свечи достаточно обогащен, чтобы воспламениться от искры и поджечь остальную смесь. В результате двигатель устойчиво работает даже при общем соотношении воздуха и топлива в цилиндре 40:1.

Работа двигателя на сильнообедненной смеси поставила новую проблему – нейтрализацию отработавших газов. Дело в том, что при этом режиме основную их долю составляют оксиды азота, и поэтому обычный каталитический нейтрализатор становится малоэффективным. Для решения этой задачи была применена рециркуляция отработавших газов (EGR-Exhaust Gas Recirculation), которая резко снижает количество образующихся оксидов азота и установлен дополнительный NO-катализатор.

Система EGR “разбавляя” топливо-воздушную смесь отработавшими газами, снижает температуру горения в камере сгорания, тем самым “приглушая” активное образование вредных оксидов, в том числе NOx. Однако обеспечить полную и стабильную нейтрализацию NOx только за счет EGR невозможно, так как при увеличении нагрузки на двигатель количество перепускаемых ОГ должно быть уменьшено. Поэтому на двигатель с непосредственным впрыском был внедрен NO-катализатор.

Существует две разновидности катализаторов для уменьшения выбросов NOx – селективные (Selective Reduction Type) и
накопительного типа (NOx Trap Type). Катализаторы накопительного типа более эффективны, но чрезвычайно чувствительны к высокосернистым топливам, чему менее подвержены селективные. В соответствии с этим, накопительные катализаторы устнавливаются на модели для стран с низким содержанием серы в бензине, и селективные – для остальных.

Мощностной режим (впрыск на такте впуска). Так называемый “режим однородного смесеобразования” используется при интенсивной городской езде, высокоскоростном загородном движении и обгонах. Топливо впрыскивается на такте впуска коническим факелом, перемешиваясь с воздухом и образуя однородную смесь, как в обычном двигателе с распределенным впрыском. Состав смеси – близок к стехиометрическому (14,7:1)

Двухстадийный режим (впрыск на тактах впуска и сжатия). Этот режим позволяет повысить момент двигателя в том случае, когда водитель, двигаясь на малых оборотах, резко нажимает педаль акселератора. Когда двигатель работает на малых оборотах, а в него вдруг подается обогащенная смесь, вероятность детонации возрастает. Поэтому впрыск осуществляется в два этапа. Небольшое количество топлива впрыскивается в цилиндр на такте впуска и охлаждает воздух в цилиндре. При этом цилиндр заполняется сверхбедной смесью (примерно 60:1), в которой детонационные процессы не происходят. Затем, в конце такта
сжатия, подается компактная струя топлива, которая доводит соотношение воздуха и топлива в цилиндре до “богатого” 12:1.

Почему этот режим введен только для автомобилей для европейского рынка? Да потому что для Японии присущи невысокие скорости движения и постоянные пробки, а Европа- это протяженные автобаны и высокие скорости (а следовательно, высокие нагрузки на двигатель).

Компания Mitsubishi стала пионером в применении непосредственного впрыска топлива. На сегодняшний день аналогичную технологию используют Mercedes (CGI), BMW (HPI), Volkswagen (FSI, TFSI, TSI) и Toyota (JIS). Главный принцип работы этих систем питания аналогичен– подача бензина не во впускной тракт, а непосредственно в камеру сгорания и формирование послойного либо однородного смесеобразования в различных режимах работы мотора. Но подобные топливные системы имеют и различия, причем иногда довольно существенные. Основные из них – рабочее давление в топливной системе, расположение форсунок и их конструкция.

На сегодняшний день системы впрыска активно применяются на бензиновых и дизельных ДВС. Стоит отметить, что для каждой вариации мотора подобная система будет в существенной мере отличаться. Об этом далее в статье.

Система впрыска, назначение, чем отличается система впрыска бензинового двигателя от системы впрыска дизеля

Основное назначение системы впрыска (другое название — инжекторная система) — обеспечение своевременной подачи горючего в рабочие цилиндры мотора.

В бензиновых моторах процесс впрыска поддерживает образование воздушнотопливной смеси, после чего осуществляется ее воспламенение с помощью искры. В дизельных моторах подача горючего производится под высоким давлением — одна часть горючей смеси соединяется со сжатым воздухом и практически мгновенно самовоспламеняется.

Система впрыска бензина, устройство систем впрыска топлива бензиновых двигателей

Система впрыска топлива — составная часть топливной системы ТС. Основной рабочий орган любой системы впрыска — форсунка. Зависимо от метода образования воздушнотопливной смеси существуют системы непосредственного впрыска, распределенного впрыска и центрального впрыска. Системы распределенного и центрального впрыска — системы предварительного впрыска, то есть впрыск в них осуществляется во впускном коллекторе, не доходя до камеры сгорания.

Системы впрыска бензиновых моторов могут иметь электронное либо механическое управление. Самым совершенным считается электронное управление впрыском, которое обеспечивает существенную экономию горючего и снижение вредных выбросов в атмосферу.

Впрыск горючего в системе осуществляется импульсно (дискретно) или непрерывно. С точки зрения экономии перспективным считается импульсный впрыск горючего, используемый всеми современными системами.

В моторе система впрыска, как правило, соединена с системой зажигания и создает объединенную систему зажигания и впрыска (к примеру, системы Fenix, Motronic). Система управления мотором обеспечивает согласованную работу систем.

Системы впрыска бензиновых двигателей, типы систем впрыска топлива, достоинства и недостатки каждого вида систем впрыска бензиновых двигателей

На бензиновых моторах применяются такие системы подачи горючего — непосредственный впрыск, комбинированный впрыск, распределенный впрыск (многоточечный), центральный впрыск (моновпрыск).

Центральный впрыск. Подача горючего в данной системе производится посредством топливной форсунки, расположенной во впускном коллекторе. А так как форсунка всего одна, эту систему называют еще моновпрыском.

На сегодняшний день системы центрального впрыска утратили свою актуальность, поэтому они и не предусмотрены в новых моделях авто, однако в некоторых старых ТС их все же можно встретить.

Преимущества моновпрыска — надежность и простота применения. К минусам данной системы можно отнести высокий расход горючего и низкий уровень экологичности мотора. Распределенный впрыск. В системе многоточечного впрыска предусмотрена отдельная подача топлива на каждый цилиндр, который оборудован индивидуальной топливной форсункой. ТВС, при этом, возникает лишь во впускном коллекторе.

На сегодняшний день большинство бензиновых моторов оборудовано системой распределенной подачи горючего. Преимущества подобной системыоптимальный расход горючего, высокая экологичность, оптимальные потребности к качеству потребляемого горючего.

Непосредственный впрыск. Одна из самых прогрессивных и совершенных систем впрыска. Принцип действия данной системы основывается на прямой (непосредственной) подаче горючего в камеру сгорания.

Система непосредственной подачи горючего дает возможность получать качественный состав топлива на всех этапах эксплуатации мотора, чтобы улучшить процесс сгорания ТВС, увеличить рабочую мощность мотора и снизить уровень отработанных газов.

Недостатки данной системы впрыска — довольно сложная конструкция и большие требования к качеству горючего.

Комбинированный впрыск. В системе данного типа объединяются две системы — распределенный и непосредственный впрыск. Как правило, она применяется, чтобы уменьшить выбросы токсичных компонентов и отработанных газов, с помощью чего можно достигнуть высоких показателей экологичности мотора.

Системы впрыска дизельных двигателей, виды систем, достоинства и недостатки каждого вида систем впрыска дизельного топлива

На современных дизельных моторах используются следующие системы впрыска — система Common Rail, система насос-форсунки, система с распределительным или рядным топливным насосом высокого давления (ТНВД).

Самыми востребованными и прогрессивными считаются насос-форсунки и Common Rail. ТНВД — центральный компонент любой топливной системы дизельного мотора.
Подача топливной смеси в дизельных моторах может производиться в предварительную камеру или прямо в камеру сгорания.

В настоящее время отдается предпочтение системе непосредственного впрыска, отличающейся повышенным уровнем шума и менее плавной работой мотора в сравнении с подачей в предварительную камеру, однако при этом обеспечивается более важный показатель — экономичность.

Система насос-форсунки. Данная система используется для подачи, а также впрыска горючей смеси под большим давлением насос-форсунками. Ключевая особенность данной системы — в одном устройстве объединены две функции — впрыск и создание давления.

Конструктивный недостаток данной системы — насос оборудован постоянным приводом от распределительного вала мотора (не отключаемый), который способен привести к быстрому износу системы. В результате этого изготовители все чаще отдают предпочтение системам Common Rail.

Аккумуляторный впрыск (Common Rail). Более совершенная конструкция подачи горючей смеси для множества дизельных моторов. В такой системе горючее подается от рампы к топливным форсункам, которая еще называется аккумулятором высокого давления, в результате чего у системы образовалось еще одно название — аккумуляторный впрыск.

Система Common Rail предусматривает проведение следующих этапов впрыска — предварительного, главного и дополнительного. Это дает возможность уменьшить вибрации и шум мотора, сделать процедуру самовоспламенения горючего более эффективной, уменьшить вредные выбросы.

Выводы

Чтобы управлять системами впрыска на дизелях предусматривается наличие электронных и механических устройств. Механические системы дают возможность контролировать рабочее давление, момент и объем впрыска горючего. В электронных системах предусмотрено более эффективное управление дизельными моторами в целом.

Все современные двигатели полностью переведены со старой и изжившей себя карбюраторной системы питания на впрыск топлива в двигатель за счет инжектора. Сразу же после такой перемены в автожизни возникли противоречия применения различных инжекторных систем впрыска. Так, до сих пор между автопроизводителями ведутся споры, какая из них лучше, потому как каждая имеет свои как достоинства, так и недостатки.

Рассмотрим самые известные и повсеместно используемые системы впрыска топлива

Центральный впрыск топлива

Являясь альтернативой карбюраторной системе, впервые центральный впрыск стал применяться в 80 года XX века. Правда особой разницы между ней и карбюратором не отмечено. Здесь также имеется смешивание воздуха с топливом внутри впускного коллектора. Разница лишь в том, что на смену чувствительному и довольно сложному карбюратору пришла форсунка. Электроники здесь, конечно же, нет — все осуществляется посредством механики.

Но все же одноточечный впрыск позволял работать двигателю более мощно и, что более важно, менее затратно финансово.

Происходило это, потому что форсунка обеспечивала более точную и экономичную дозировку объема топлива. После чего возникала однородная смесь, которая могла менять свой состав мгновенно при различных условиях движения и режимах работы мотора.

Недостатки центрального впрыска

Однако, у этой системы были и свои весомые минусы. Так, например, отмечалось высокое сопротивление воздуха, который поступал в цилиндры. Потому как форсунку очень часто монтировали в корпус карбюратора, да и датчики тех времен были довольно громоздки, что затрудняло «дыхание» двигателя. В теории, такой «минус» можно было бы легко исправить — это да, но в реальной жизни тех лет устранение неравномерного поступления топливной смеси в цилиндры — было весьма проблематичной задачей. Смеси нужно было преодолеть длинный путь по трубопроводам, которые конструировались самой разнообразной длины и с разным сопротивлением. Все это привело к тому, что на данный момент центральный впрыск практически не используется. Слишком уж сложно было доработать центральную систему, легче начать заново и придумать что-нибудь новенькое.

Многоточечный или распределительный впрыск

Его основным отличием от предыдущей системы является наличие индивидуальной форсунки для каждого цилиндра во впускном патрубке. Смесь получается однородной по составу для всех цилиндров. Вначале она была исключительно механической, но эту систем постоянно совершенствовали.

Итак, в 90 годах XX века стали широко внедрять электронику. Это позволило усовершенствовать и систему питания двигателя, кроме того возникал возможность координации ее действий с остальными частями двигателя.

Потому-то современный автомобиль способен не просто сигнализировать водителю, что имеются неисправности, но и включить при необходимости аварийный режим.

В систему многоточечного впрыска были внедрены и дополнительные датчики, которые позволили переводить впрыск с параллельной на последовательную подачу топлива в двигатель. Такая схема позволила обеспечить индивидуальный расчет времени для каждого цилиндра, для того, чтобы топливо подавалось исключительно в нормированный промежуток перед тем, как откроется клапан. Несомненно, что плюсов такой схемы намного больше, она эффективнее и точнее, но и стоит намного дороже.

Прямой впрыск

При такой системе бензин попадает через форсунки непосредственно в цилиндры мотора. отмечено, что сначала такая система применялась только в авиационных моторах еще во времена Второй мировой войны. Первым автомобилем с прямым впрыском был Goliath GP700. Но в послевоенный период такой вид системы впрыска топлива не был популярен в силу дороговизны топливных насосов и уникальной для данной системы головки блока цилиндров. Тогда инженерам не удалось найти оптимального баланса, точной работы и приемлемой надежности такой схемы.

Непосредственный впрыск

Рост экологических мировых проблем привел к тому, что в 90-е года прошлого столетия о прямом впрыске топлива вспомнили вновь. Первым применил эту схему концерн Mitsubishi, выпустив в 96 году серию моторов GDI, после них и другими автопроизводителями был перенят успешный опыт японцев — Mercedes-Benz, Volkswagen, BMW, FIAT, Peugeot-Citroen и прочие.

Объясняется это тем, что такая схема подачи топлива позволяет двигателю функционировать и на смесях с высоким содержанием воздуха, такие смеси называются обедненными, и не случайно, ведь чем меньше нужно топлива, тем выше экономичность.

Также бензин, подаваясь в цилиндры, обеспечивает повышение степени сжатия двигателя, что в свою очередь увеличивает его мощность и эффективность.

В заключении

Непосредственный впрыск, пожалуй, оптимальное решение в питании автомобиля топливом, если бы не некоторые «НО». Моторы с такой схемой довольно капризны к качеству октановой смеси , работа их отличается повышенной жесткостью и шумностью, что приводит к усилению шумоизоляции салона авто. Кроме того, работая на обедненные смеси, выделяется высокое количество оксидов азота, а борьба с ними ведется посредством усложнения конструкции мотора. Но как ни крути инжектор гораздо лучше карбюратора — и это только говоря простым языком.

Удачи и будьте аккуратны!

В статье использовано изображение с сайта www.motorpage.ru

Работоспособность любого транспортного средства, в первую очередь, обеспечивается исправной работой его «сердца» - двигателя. В свою очередь, составляющей частью стабильной деятельности этого «органа» есть слаженная работа системы впрыска, с помощь которой подается необходимое для работы топливо. На сегодняшний день, благодаря множеству преимуществ, она полностью вытеснила карбюраторную систему. Главным положительным моментом ее использования является наличие «умной электроники», обеспечивающей точную дозировку топливовоздушной смеси, что повышает мощность транспортного средства и существенно увеличивает топливную экономичность. К тому же, электронная система впрыска в значительно большей степени помогает придерживаться строгих экологических норм, вопрос соблюдения которых, в последнее время, приобретает все большей актуальности. Учитывая вышесказанное, выбор темы данной статьи более чем уместен, так, что давайте рассмотрим принцип работы этой системы более детально.

1. Принцип работы электронного впрыска топлива

Электронная (или более известный вариант названия «инжекторная») система подачи топлива может устанавливаться на автомобили как с бензиновыми, так и с Однако, конструкция механизма в каждом из этих случаев, будет иметь существенные различия. Все топливные системы можно разделить за такими классификационными признаками:

- за способом подачи топлива выделяют прерывистую и непрерывную подачу;

За типом дозирующих систем различают распределители, форсунки, регуляторы давления, плунжерные насосы;

За способом управления количеством подаваемой горючей смеси – механические, пневматические и электронные;

За основными параметрами регулировки состава смеси – разряжение во впускной системе, при угле поворота дроссельной заслонки и расходе воздуха.

Система впрыска топлива современных бензиновых двигателей имеет либо электронное, либо механическое управление. Естественно, более совершенным вариантом является электронная система, так как она в значительно лучшей степени может обеспечить экономию топлива, сокращение уровня выброса вредных токсичных веществ, увеличение мощности мотора, улучшение общей динамики машины и облегчение «холодного пуска».

Первой, полностью электронной системой, стал продукт, выпущенный американской компанией Bendix в 1950 году. Спустя 17 лет, аналогичное устройство создала и компания Bosch, после чего оно было установлено на одну из моделей Volkswagen. Именно это событие положило начало массовому распространению системы электронного управления впрыском топлива (EFI - Electronic Fuel Injection), при чем не только на спортивных автомобилях, но и на транспортных средствах класса «люкс».

Полностью электронная система использует для своей работы (топливные форсунки), вся деятельность которых базируется на электромагнитном действии. В определенные моменты рабочего цикла двигателя, они открываются и остаются в таком положении на протяжении всего времени, необходимого для подачи того или иного количества топлива. Тоесть, время открытого состояния – прямо пропорционально требуемому количеству бензина.

Среди полностью электронных систем впрыска топлива, выделяют следующие два типы, отличающиеся в основном только способом измерения воздушного потока: систему с непрямым измерением воздушного давления и с прямым измерением воздушного потока. Такие системы, для определения уровня разрежения в коллекторе, используют соответствующий датчик (MAP - manifold absolute pressure). Его сигналы направляются на электронный модуль (блок) управления, где учитывая аналогичные сигналы поступающие с других датчиков, перерабатываются и перенаправляются на электромагнитную форсунку (инжектор), что и вызывает ее открытие на нужное для поступление воздуха время.

Хорошим представителем системы с датчиком давления есть система Bosch D-Jetronic (литера «D» - давление). Работа системы впрыска с электронным управлением базируется на некоторых особенностях. Сейчас мы опишем отдельные из них, характерные для стандартного типа такой системы (EFI). Начнем с того, что она может быть подразделена на три подсистемы: первая -отвечает за подачу топлива, вторая - за всасывание воздуха, ну а третья является электронной системой управления.

Структурными частями системы подачи топлива есть топливной бак, топливный насос, подающий топливопровод (направляющий от распределителя для топлива), топливную форсунку, регулятор давления топлива и обратный топливопровод. Принцип действия системы следующий: с помощью электрического топливного насоса (размещается внутри или рядом с топливным баком), бензин выходит из бака и подается в форсунку, а все загрязнения отфильтровываются с помощью мощного встроенного топливного фильтра. Та часть топлива, которая не была направлена через форсунку во всасывающий трубопровод, возвращается в бак через обратный топливопривод. Поддержание постоянного давления топлива обеспечивает специальный регулятор, отвечающий за стабильность этого процесса.

Система всасывания воздуха состоит из дроссельного клапана, всасывающего коллектора, очистителя воздуха, впускного клапана и воздухозаборной камеры. Принцип ее действия такой: при открытом дроссельном клапане, воздушные потоки проходят через очиститель, затем через расходометр воздуха (им оборудуются системы типа L), дроссельный клапан и качественно настроенный впускной патрубок, после чего попадают во впускной клапан. Функция направления воздуха в двигатель требует наличия привода. По ходу открытия клапана дросселя, в цилиндры мотора попадает значительно большее количество воздуха.

В некоторых силовых агрегатах применяются два разных способа измерения объема входящих воздушных потоков. Так, например, при использовании системы EFI (тип D), воздушный поток измеряют при помощи проведения мониторинга давления во всасывающем коллекторе, тоесть косвенно, в то время как аналогичная система, но уже типа L делает это напрямую, используя специальное устройство – расходометр воздуха.

В состав электронной системы управления входят следующие виды датчиков: двигателя, электронного управляющего блока (ECU), устройства топливной форсунки и соответствующей проводки. С помощью указанного блока, путем мониторинга датчиков силового агрегата определяется точное количество подаваемого форсунке топлива. Что бы подавать в мотор воздух/топливо в соответствующих пропорциях, блок управления запускает работу форсунок на конкретный период времени, которые именуют «шириной импульса впрыска» или «продолжительностью впрыска». Если описывать основной режим работы системы электронного впрыска топлива, с учетом уже названных подсистем, то он будет иметь следующий вид.

Попадая в силовой агрегат через систему всасывания воздуха, воздушные потоки измеряются с помощью расходометра. Когда воздух оказывается в цилиндре, происходит его смешивание с топливом, в чем не последнюю роль играет работа топливных форсунок (расположенных за каждым впускным клапаном всасывающего коллектора). Эти детали являются своеобразными электроклапанами, которые управляются электронным блоком (ECU). Он посылает на форсунку определенные импульсы, используя для этого включение и выключение цепи ее заземления. Когда она включена, происходит открытие и топливо распыляется на заднюю часть стенки впускного клапана. При попадании в подающийся снаружи воздух, оно смешивается с ним и испаряется благодаря низкому давлению всасывающего коллектора.

Сигналы, посылаемые электронным блоком управления, обеспечивают такой уровень подачи топлива, который будет достаточным для достижения идеального соотношения пропорций воздух/топливо (14,7:1), называемого еще стехиометрией. Именно ECU, исходя из измеренного объема воздуха и оборотов мотора, определяет основной объем впрыска. В зависимости от условий эксплуатации двигателя, этот показатель может изменяться. Блок управления отслеживает такие сменные величины как скорость двигателя, температура тосола (охлаждающей жидкости),содержания кислорода в выхлопных газах и угол расположения дросселя, в соответствии с чем производит корректировку впрыска, определяющую окончательный объем впрыскиваемого топлива.

Безусловно, система питания с электронным дозированием топлива, превосходит карбюраторное питание бензиновых двигателей, поэтому нет ничего удивительного в ее широкой популярности. Системы впрыска бензина, из-за наличия огромного числа электронных и подвижных прецизионных элементов, являются более сложными механизмами, поэтому, требуют высокого уровня ответственности в подходе к вопросу обслуживания.

Существование системы впрыска дает возможность более точно распределить топливо по цилиндрам мотора. Это стало возможным, благодаря отсутствию дополнительного сопротивления воздушному потоку, которое на впуске создавали карбюратор и дифузоры. Соответственно, повышения коэффициента наполнения цилиндров напрямую влияет на увеличения уровня мощности двигателя. Давайте же сейчас рассмотрим более детально все положительные моменты использования системы электронного впрыска топлива.

2. Плюсы и минусы электронного впрыска топлива

К положительным моментам стоит отнести:

Возможность более равномерного распределения топливо-воздушной смеси. Каждый цилиндр имеет собственную форсунку, подающую топливо непосредственно на впускной клапан, что позволяет избежать необходимости подачи через всасывающий коллектор. Это способствует улучшению его распределения между цилиндрами.

Высокоточность контролирования пропорций воздуха и топлива, в независимости от эксплуатационных условий двигателя. С помощью стандартной электронной системы, в двигатель поступает точная пропорция топлива и воздуха, что значительно улучшает дорожные качества транспортного средства, топливную экономичность и контроль за выхлопными газами. Улучшение работоспособности дросселя. Благодаря подачи топлива непосредственно на заднюю стенку впускного клапана, можно оптимизировать работу всасывающего коллектора, повысив тем самым скорость движения воздушного потока через впускной клапан. За счет таких действий улучшается крутящий момент и рабочая эффективность дросселя.

Повышение топливной экономичности и улучшение контроля токсичности выхлопных газов. В двигателях, оснащенных системой EFI, обогащение топливной смеси при холодном запуске и широко открытой дроссельной заслонке, поддается сокращению, так как смешивание топлива не является проблематичным действием. За счет этого, появляется возможность экономии топлива и улучшения контроля за выхлопными газами.

Улучшение эксплуатационных качеств холодного двигателя (в том числе и пусковых). Возможность впрыска топлива сразу на впускной клапан, в сочетании с улучшенной формулой распыления, соответственно повышает пусковые и эксплуатационные возможност холодного мотора. Упрощение механики и снижение чувствительности к регулировке. При холодном старте или измерении топлива, система EFI не зависит от регулировки обогащения топливной смеси. А поскольку, с механической точки зрения, она отличается простотой, то и требования к ее техническому обслуживанию снижены.

Однако, ни один механизм не может обладать исключительно положительными качествами, поэтому, в сравнении с теми же карбюраторными двигателями, моторы с электронной системой впрыска топлива имеют некоторые недостатки. К основным из них относят: высокую стоимость; практически полную невозможность ремонтных действий; высокие требования к составу топлива; сильную зависимость от источников электропитания и необходимость постоянного наличия напряжения (более современный вариант, который контролируется электроникой). Также, в случае поломки, не получится обойтись без специализированного оборудования и высококвалифицированного персонала, что выражается в слишком дорогостоящем обслуживании.

3. Диагностика причин неисправностей системы электронного впрыска топлива

Возникновение неполадок в системе впрыска – не такое уж и редкое явление. Особенно актуальным этот вопрос есть для владельцев старых моделей автомобилей, которым не раз приходилось сталкиваться как с обычным засорением форсунок, так и с более серьезными проблемами по части электроники. Причин неисправностей, часто возникающих в данной системе, может быть очень много, однако наиболее распространенными среди них есть следующие:

- дефекты («брак») конструктивных элементов;

Граничный срок службы деталей;

Систематическое нарушение правил эксплуатации автомобиля (использование низкокачественного топлива, загрязнения системы и т.д.);

Внешние отрицательные воздействия на конструктивные элементы (попадание влаги, механические повреждения, окисление контактов и др.)

Наиболее надежным способом их определения является компьютерная диагностика. Этот вид диагностической процедуры основывается на автоматическом фиксировании отклонений параметров системы от установленных значений нормы (режим самодиагностики). Обнаруженные ошибки (несоответствия) остаются в памяти электронного блока управления в виде так называемых «кодов неисправностей». Для проведения этого метода исследования, к диагностическому разъему блока подключают специальное устройство (персональный компьютер с программой и кабелем или сканер), задача которого считать все имеющиеся коды неисправностей. Однако, учтите – кроме специального оборудования, точность результатов проведенной компьютерной диагностики, будет зависеть от знаний и навыков человека который ее проводил. Поэтому, доверять процедуру следует только квалифицированным сотрудникам специальных сервисных центров.

В компьютерную проверку электронных составляющих системы впрыска входи т:

- диагностика топливного давления;

Проверка всех механизмов и узлов системы зажигания (модуля, высоковольтных проводов, свечей);

Проверка герметичности впускного коллектора;

Состава топливной смеси; оценка токсичности отработанных газов по шкалах СН и СО);

Диагностика сигналов каждого датчика (используется метод эталонных осцилограмм);

Проверка цилиндрической компрессии; контроль отметок положения ремня ГРМ и много других функций, которые зависят от модели машины и возможностей самого диагностического аппарата.

Проведение указанной процедуры необходимо если Вы хотите узнать имеются ли неисправности в системе электронной подачи (впрыска) топлива и если есть, то какие. Электронный блок EFI (компьютер) «помнит» все неисправности лишь пока система подключена к аккумуляторной батареи, если клемму отсоединить – вся информация исчезнет. Так будет, ровно до того момента, пока водитель вновь не включит зажигание и компьютер наново не проверит работоспособность всей системы.

На некоторых автомобилях, оборудованных системой электронной подачи топлива (EFI), под капотом имеется коробочка, на крышке которой Вы сможете заметить надпись "DIAGNOSIS" . К ней еще подведен довольно толстый жгут разных проводов. Если коробочку открыть, то с внутренней стороны крышки будет видна маркировка выводов. Возьмите любой провод и с его помощью замкните выводы "Е1" и "ТЕ1" , после чего сядьте за руль, включите зажигание и наблюдайте за реакцией лампочки "CHECK" (на ней изображен двигатель). Обратите внимание! Кондиционер обязательно должен быть в выключенном состоянии.

Как только Вы повернете ключ в замке зажигания, указанная лампочка начнет мигать. Если она «моргнет» 11 раз (или больше), через равный промежуток времени, это будет значить, что в памяти бортового компьютера нет информации и с поездкой на полную диагностику системы (в частности и электронного впрыска топлива) можно повременить. Если вспышки будут хоть как-то отличаться – значит стоит обратиться к специалистам.

Такой способ «домашней» мини-диагностики доступен не всем владельцам транспортным средств (в основном только иномарок), но тем у кого есть такой разъем, в этом плане повезло.

В современных автомобилях в бензиновых силовых установках принцип работы системы питания схож с тем, который применяется на дизелях. В этих моторах она разделена на две – впуска и впрыска. Первая обеспечивает подачу воздуха, а вторая – топлива. Но из-за конструктивных и эксплуатационных особенностей функционирование впрыска существенно отличается от применяемого на дизелях.

Отметим, что разница в системах впрыска дизельных и бензиновых моторов все больше стирается. Для получения лучших качеств конструкторы заимствуют конструктивные решения и применяют их на разных видах систем питания.

Устройство и принцип работы инжекторной системы впрыска

Второе название систем впрыска бензиновых моторов – инжекторная . Основная ее особенность заключается в точной дозировке топлива. Достигается это путем использования в конструкции форсунок. Устройство инжекторного впрыска двигателя включает в себя две составляющие – исполнительную и управляющую.

В задачу исполнительной части входит подача бензина и его распыление. Она включает в себя не так уж и много составных элементов:

  1. Насос (электрический).
  2. Фильтрующий элемент (тонкой очистки).
  3. Топливопроводы.
  4. Рампа.
  5. Форсунки.

Но это только основные компоненты. Исполнительная составляющая может в себя включать еще ряд дополнительных узлов и деталей – регулятор давления, систему слива излишков бензина, адсорбер.

В задачу указанных элементов входит подготовка топлива и обеспечение его поступления к форсункам, которыми и осуществляется их впрыскивание.

Принцип работы исполнительной составляющей прост. При повороте ключа зажигания (на некоторых моделях – при открытии водительской двери) включается электрический насос, который качает бензин и заполняет им остальные элементы. Топливо проходит очистку и по топливопроводам поступает в рампу, которая соединяет собой форсунки. За счет насоса топливо во всей системе находится под давлением. Но его значение ниже, чем на дизелях.

Открытие форсунок осуществляется за счет электрических импульсов, подаваемых с управляющей части. Эта составляющая системы впрыска топлива состоит из блока управления и целого комплекта следящих устройств – датчиков.

Эти датчики отслеживают показатели и параметры работы – скорость вращения коленчатого вала, количества подаваемого воздуха, температуры ОЖ, положения дросселя. Показания поступают на блок управления (ЭБУ). Он эту информацию сравнивает с данными, занесенными в память, на основе чего определяется длина электрических импульсов, подаваемых на форсунки.

Электроника, используемая в управляющей части системы впрыска топлива, нужна, чтобы высчитать время, на которое должна открыться форсунка при том или ином режиме работы силового агрегата.

Виды инжекторов

Но отметим, что это общая конструкция системы подачи бензинового мотора. Но инжекторов разработано несколько, и каждая из них обладает своими конструктивными и рабочими особенностями.

На автомобилях применяются системы впрыска двигателя:

  • центрального;
  • распределенного;
  • непосредственного.

Центральный впрыск считается первым инжектором. Его особенность заключается в использовании только одной форсунки, которая впрыскивала бензин во впускной коллектор одновременно для всех цилиндров. Изначально он был механическим и никакой электроники в конструкции не использовалось. Если рассмотреть устройство механического инжектора, то она схожа с карбюраторной системой, с единственной разницей, что вместо карбюратора использовалась форсунка с механическим приводом. Со временем центральную подачу сделали электронной.

Сейчас этот тип не используется из-за ряда недостатков, основной из которых — неравномерность распределения топлива по цилиндрам.

Распределенный впрыск на данный момент является самой распространенной системой. Конструкция этого типа инжектора расписана выше. Ее особенность заключается в том, что топливо для каждого цилиндра подает своя форсунка.

В конструкции этого вида форсунки устанавливаются во впускном коллекторе и располагаются рядом с ГБЦ. Распределение топлива по цилиндрам дает возможность обеспечить точную дозировку бензина.

Непосредственный впрыск сейчас является самым совершенным типом подачи бензина. В предыдущих двух типах бензин подавался в проходящий поток воздуха, и смесеобразование начинало осуществляться еще во впускном коллекторе. Этот же инжектора по конструкции копирует дизельную систему впрыска.

В инжекторе с непосредственной подачей распылители форсунок располагаются в камере сгорания. В результате компоненты топливовоздушной смеси здесь запускаются в цилиндры по отдельности, и уже в самой камере они смешиваются.

Особенность работы этого инжектора заключается в том, что для впрыскивания бензина требуется высокие показатели давления топлива. И его создание обеспечивает еще один узел, добавленный в устройство исполнительной части – насос высокого давления.

Системы питания дизельных двигателей

И дизельные системы модернизируются. Если раннее она была механической, то сейчас и дизеля оснащаются электронным управлением. В ней используются те же датчики и блок управления, что и в бензиновом моторе.

Сейчас на автомобилях применяется три типа дизельных впрысков:

  1. С распределительным ТНВД.
  2. Common Rail.
  3. Насос-форсунки.

Как и в бензиновых моторах, конструкция дизельного впрыска состоит из исполнительной и управляющей частей.

Многие элементы исполнительной части те же, что и у инжекторов – бак, топливопроводы, фильтрующие элементы. Но есть и узлы, которые не встречаются на бензиновых моторах – топливоподкачивающий насос, ТНВД, магистрали для транспортировки топлива под высоким давлением.

В механических системах дизелей применялись рядные ТНВД, у которых давление топлива для каждой форсунки создавала своя отдельная плунжерная пара. Такие насосы отличались высокой надежностью, но были громоздкими. Момент впрыска и количество впрыскиваемого дизтоплива регулировалось насосом.

В двигателях, оснащаемых распределительным ТНВД, в конструкции насоса используется только одна плунжерная пара, которая качает топливо для форсунок. Этот узел отличается компактными размерами, но ресурс его ниже, чем рядных. Применяется такая система только на легковом автотранспорте.

Common Rail считается одной из самых эффективных дизельных систем впрыска двигателя. Общая концепция ее во многом позаимствована у инжектора с раздельной подачей.

В таком дизеле моментом начала подачи и количеством топлива «заведует» электронная составляющая. Задача насоса высокого давления — только нагнетание дизтоплива и создание высокого давления. Причем дизтопливо подается не сразу на форсунки, а в рампу, соединяющую форсунки.

Насос-форсунки – еще один тип дизельного впрыска. В этой конструкции ТНВД отсутствует, а плунжерные пары, создающие давление дизтоплива, входят в устройство форсунок. Такое конструктивное решение позволяет создавать самые высокие значения давления топлива среди существующих разновидностей впрыска на дизельных агрегатах.

Напоследок отметим, что здесь приводится информация по видам впрыска двигателей обобщенно. Чтобы разобраться с конструкцией и особенностями указанных типов, их рассматривают по отдельности.

Видео: Управление системой впрыска топлива

Понравилось? Лайкни нас на Facebook