Инжекторный двигатель: устройство и принцип работы. Инжектор: устройство, принцип работы и возможности ремонта

Инжектор (или форсунка) нужен для точечной подачи топлива в двигатель, его распыления в камере сгорания, а так же образования воздушно-топливной смеси.

Инжектор пришел на смену карбюратору из-за несостоятельности последнего. На современных машинах форсунка используется повсеместно, причем как на бензиновых, так и на дизельных движках.

Виды инжекторов

В зависимости от способа подачи топлива в двигатель различают три вида форсунок.

Электромагнитная форсунка. Подобный инжектор пользуется популярностью на бензиновых двигателях. Устройство форсунки включает сопло и электромагнитный клапан с иглой. Работа инжектора осуществляется благодаря постоянному заложенному алгоритму. Блок управления подает напряжение на обмотку клапана. Электромагнитное поле, образованное этим действием, преодолевает усилие пружины и втаскивает иглу. Освобождается сопло, через которое впрыскивается топливо. После этого напряжение уходит, игла форсунки возвращается на седло.

Электрогидравлическая форсунка. Такой инжектор используют на дизельных движках. Устройство форсунки объединяет камеру управления, дроссели (сливной и впускной), а так же электромагнитный клапан.

В начальном положении игла форсунки прижата давлением топлива на поршень к седлу, клапан закрыт и обесточен. Затем из электронного блока управления подается команда на клапан, он открывает сливной дроссель. Через него топливо вытекает в сливную магистраль из камеры управления. Впускной же дроссель препятствует скорому выравниванию давлений во впускной магистрали и камере управления. Вследствие этого давление на поршень падает, а на иглу не меняется, поэтому и происходит впрыск топлива.

Пьезоэлектрическая форсунка. Быстрота срабатывания, точность дозировки впрыскиваемого топлива, а так же возможность его многократного впрыска: все эти параметры позволяют назвать пьезоэлектрический инжектор лучшей форсункой из имеющихся устройств на данный момент. Сделана форсунка на основе пъезокристалла, включает в себя переключающий клапан, иглу, толкатель.

Работа пьезоэлектрического инжектора основана на принципе гидравлики. В начальном положении игла сидит на седле с помощью высокого топливного давления. На пьезоэлемент подается электрический сигнал, что увеличивает его длину. Усилие переходит на поршень, раскрывается переключающий клапан и топливо подается в сливную магистраль. Игла поднимается за счет разницы давлений в нижней части и собственно на иглу, происходит впрыск топлива в двигатель.

Принцип работы инжектора


Наука далеко шагнула вперед, и в отличие от движков старого типа, под каждый из цилиндров ставят отдельный инжектор. Они соединяются между собой топливной рампой, а за каждой из форсунок находится топливо, которое под давлением подает электронный бензонасос. Инжектор оборудован электромагнитным клапаном. Когда он открывается, топливо впрыскивается либо в коллектор, либо в цилиндр, если стоит система прямого впрыска. Чем дольше клапан остается раскрытым, тем больше топлива попадает в цилиндр, и тем выше будут обороты движка. В современных авто за эту систему отвечает электроника. Электронный блок работает на основании сведений от множества датчиков (о них мы расскажем ниже). Эта информация позволяет настраивать двигатель в соответствии с любой нагрузкой, при любой температуре и при любых его оборотах.

Теперь поговорим об основных датчиках, координирующих работу инжектора. Одним из них является датчик температуры охлаждающей жидкости. Он отвечает за коррекцию подачи топлива и управление электрическим вентилятором. В случае поломки датчик перестанет подавать данные в блок, а двигатель будет работать согласно запрограммированным данным. Они берутся из таблиц и полностью зависят от времени работы движка.
Далее рассмотрим датчик массового наполнения. Он регулирует цикловое наполнение цилиндра. Это устройство рассчитывает массовый расход воздуха и переводит это число в цикловое наполнение. При выходе датчика из строя, расчет наполнения будет проходить по аварийным таблицам, а данные датчика – игнорироваться.

Датчик кислорода вычисляет концентрацию кислорода в выхлопных газах. Эти сведения электронный блок употребляет для корректировки топливных объемов. Но не все системы оборудованы этим устройством. Датчик устанавливают в системы Евро 2 и Евро 3, в зависимости от норм токсичности.

Датчик дроссельной заслонки регулирует положение заслонки в зависимости от циклового наполнения и оборотов движка. Этот датчик уменьшает нагрузку на двигатель.

Датчик детонации контролирует детонацию. В его функции входит запуск автоматического гашения детонации и корректировка угла опережения зажигания.

Датчик коленвала – единственное устройство, при выходе из строя которого система не заработает, соответственно, машина не заведется. При выключении остальных датчиков автомобиль поедет, и можно добраться до СТО самостоятельно.

Конечно же, в этом списке не все датчики инжектора, но основные мы перечислили. К тому же, их количество и комплектация зависят от системы впрыска и основных норм токсичности.

История появления инжекторов

На дворе были 70-е и автомобилисты особо не задумывались о вопросах экологии и экономии. Бензин был дешевый, и многолитровые автомобили употребляли его в неограниченных количествах. Воздух был чище, а природные залежи нефти казались неистощимыми. Но ситуация менялась. Новые промышленные предприятия загрязняли окружающую среду, к этому добавлялись и выхлопные газы автомобиля. К тому же, неожиданно возник нефтяной кризис. И люди стали искать из этого выход.

Перед конструкторами встали два вопроса: как снизить расход бензина и как уменьшить выбросы в окружающую среду. Для того чтобы понять, что привело их к инжектору, рассмотрим устройство карбюратора. В ДВС сгорает рабочая смесь, состоящая из топлива и бензина. Для её полного сгорания соотношение веществ нужно привести к 14,7:1. Эта смесь является стехиометрической, то есть, нормальной. Если же в этой смеси уменьшить объем воздуха, то она станет называться богатой. В двигателе она сгорает не полностью, а её ядовитые остатки выбрасываются в атмосферу. Именно эта богатая смесь образуется в карбюраторах при разгоне и торможении машины, а так же при работе на холостом ходу. К тому же, в карбюраторных двигателях повышенный расход топлива: во время его пути из карбюратора в цилиндр на стенках впускного коллектора оседает около 30% рабочей смеси.

Зная эти минусы, конструкторы должны были разработать топливную систему с точной подачей топлива и полным его сгоранием. Но карбюратору это было не под силу, т.к. в его основе лежит механическое устройство. Поэтому нужно было изобретать новую систему, а не усовершенствовать старую. И тогда конструкторы пришли к идее о системе впрыска. Она обеспечивает точную подачу бензина, а чем меньше размер «капель», тем лучше они соединяются с воздухом. Рабочая смесь выходит однородной и лучше сгорает в двигателе. Для снижения выброса отходов, в топливную инжекторную систему стали устанавливать каталитический нейтрализатор. Но возникала новая проблема. Катализатор – система нежная и дорогая. Он устанавливался в выхлопной части системы, а из-за изменения параметров системы впрыска, связанных с износом, в катализатор попадало топливо. Там оно догорало и выводило катализатор из строя. Поэтому конструкторы установили в систему датчики, управляющие впрыском и составом топлива. Для того чтобы ими руководить, потребовался электронный блок управления. Такая система с интеллектуальным управлением появилась в 1973 году.

Здравствуйте, уважаемые автолюбители! Как «железный конь пришел на смену деревенской лошадке», также и инжекторная система впрыска топлива, пришла на смену карбюраторам в автомобилях.

О преимуществах и недостатках систем подачи топлива, пусть спорят специалисты, а задача владельца автомобиля иметь представление о том, что такое инжектор, как устроен инжектор автомобиля.

И не обязательно устройство и принцип работы инжектора вам понадобится для того, чтобы ремонтировать его своими руками. Но, знать о том, как работает и из чего состоит инжектор автомобиля, нужно. Хотя бы для того, чтобы недобросовестные мастера автосервисов не пытались «нагреть» руки на вашем незнании своего авто.

Инжектор, как революция в автомобилестроении

Что такое инжектор автомобиля? Инжектором (лат. injicio, фр. Injecteur, англ. Injector – выбрасываю) – называется форсунка, как распылитель газа или жидкости (топлива) в двигателях, либо часть инжекторной системы подачи (впрыска) топлива в двигателях внутреннего сгорания.

Годом рождения инжекторной системы впрыска считается 1951, когда компания Bosch оснастила ею 2-х тактный двигатель купе Goliath 700 Sport. Затем, в 1954 году, эстафету подхватил Mercedes-Benz 300 SL.

Массовое, серийное внедрение инжекторных систем впрыска топлива началось в конце 70-х годов прошлого века. Работа инжектора, по своим эксплуатационным характеристикам, во многом превосходила работу карбюраторной подачи топлива.

Как результат: первое десятилетие 21 века практически завершило вытеснение карбюраторов. Современные авто снабжаются в основном системами распределенного и прямого электронного впрыска.

Принцип работы инжектора в системе подачи топлива

Fuel Injection System (система впрыска топлива) осуществляет подачу топлива посредством прямого впрыска при помощи форсунки (инжектора) в цилиндр двигателя либо во впускной коллектор. Соответственно, автомобили, оснащенные такой системой, носят название инжекторные.

Классификация инжекторного впрыска зависит от того, какой принцип действия инжектора, а также по месту установки и количеству инжекторов.

Центральный впрыск топлива (моновпрыск) осуществляет впрыск посредством одной форсунки на все цилиндры двигателя. Инжектор, как правило, располагается на впускном коллекторе (на месте карбюратора). Система моновпрыска на сегодняшнее время не пользуется популярностью у автомобилестроителей.

Основная масса современных серийных автомобилей, снабжена системой распределенного впрыска топлива. То есть, отдельная форсунка отвечает за свой цилиндр.

Система распределенного впрыска топлива, классифицируется по типам:

  • одновременный – все форсунки системы подают топливо одновременно во все цилиндры,
  • попарно-параллельный – тип впрыска, когда происходит парное открытие форсунок: одна открывается перед циклом впуска, другая, перед циклом выпуска. Характерно то, что попарно-параллельный принцип открытия форсунок применяется в период запуска двигателя, либо в аварийном режиме неисправности датчика положения распредвала. А во время движения, используется так называемый фазированный впрыск топлива,
  • фазированный - тип впрыска, когда каждый инжектор открывается перед тактом впуска,
  • прямой – тип впрыска, происходящий непосредственно в камеру сгорания.

Принцип работы инжектора основывается на использовании сигналов микроконтроллера, который в свою очередь получает данные от датчиков.

Схема работы инжектора

Если не влазить в дебри «электронного мозга» нашего автомобиля, то схема работы инжектора выглядит следующим образом. На многочисленные датчики поступает информация о: вращении коленвала, о расходе воздуха, о том, какая температура охлаждающей жидкости двигателя, о дроссельной заслонке, о детонации в двигателе, о расходе топлива, о скоростном режиме, о напряжении бортовой сети авто и так далее.

Контроллер, получая данную информацию о параметрах автомобиля, производит управление системами и приборами, в частности: подачей топлива, системой зажигания, регулятором холостого хода, системой диагностики и так далее. Изменение рабочих параметров инжекторной системы впрыска меняется систематически, исходя из полученных данных.

Инжектор включает в себя такие исполнительные элементы, как:

  • бензонасос (электрический),
  • ЭБУ (контроллер),
  • регулятор давления,
  • датчики,
  • форсунка (инжектор).

Соответственно, схема инжектора: электробензонасос подает топливо, регулятор давления поддерживает разницу давления в инжекторах (форсунках) и воздухом впускного коллектора. Контроллер, обрабатывает информацию от датчиков: температуры, детонации, распредвала и коленвала, и управляет системами зажигания, подачи топлива и так далее.

Всем хороша инжекторная система впрыска топлива, но и она не обошлась без своих особенностей. Приверженцы карбюраторов, называют их недостатками. Особенностями инжектора смело можно назвать: достаточно высокая стоимость узлов инжектора, низкая ремонтопригодность, высокие требования к качеству и составу топлива, необходимость специального оборудования для диагностики, и высокая стоимость ремонтных работ.

Теперь, перейдем от рассказа о том, как работает и выглядит инжектор к наглядному пособию. Вы увидите на видео, принцип работы инжектора, и вам сразу же станет понятно всё, о чем написано выше.

Инжектор стал логичным развитием системы впрыска автомобиля, когда последующее усовершенствование карбюратора для выполнения экологических норм было нецелесообразным. Принудительное дозирование впрыскиваемого топлива превосходит карбюратор по экономичности, экологичности и мощностным характеристикам. Рассмотрим, принцип работы инжектора, а также устройство инжекторной системы питания.

Виды системы

Свое название инжекторная система впрыска топлива получила от устройства, которое отвечает за распыление бензина – инжектора (от англ. Injection – впрыск, injector – форсунка). Система питания такого типа устанавливалась на самолеты еще в 20-х годах прошлого столетия. Что примечательно, уже тогда это был непосредственный впрыск топлива в цилиндры двигателя. Основное внимание уделим развитию вариациям системы Motronic, в которой за подачу топлива и регулировку угла зажигания отвечает (далее ЭБУ или ECU).

Single Point fuel Injection

Одноточечный тип впрыска, более известный как моновпрыск, является переходной технологией, которая позволила многим автопроизводителям задешево перейти от карбюраторной системы питания к инжектору.

Иными словами, вместо карбюратора над впускным коллектором начал устанавливаться агрегат центрального впрыска топлива. Система имела ряд преимуществ, поскольку ЭБУ позволял более точно дозировать бензин.

Принцип работы инжектора построен на следующих элементах:

  1. топливный бак с расположенным в нем топливным насосом;
  2. – фильтрующий элемент для очистки топлива;
  3. – центральный агрегат впрыска. 3а – датчик положения дроссельной заслонки (ДПДЗ); 3б – регулятор, отвечающий за давление топлива; 3с – форсунка инжектора; 3д – датчик температуры воздуха, поступающего во впускной коллектор; 3е – регулятор положения дроссельной заслонки (в простейших вариантах конструкции привод заслонки был связан с педалью акселератора тросовым приводом);
  4. – датчик температуры охлаждающей жидкости (ДТОЖ);
  5. – лямбда-зонд (кислородный датчик);
  6. – электронный блок управления двигателем.

Принцип работы

На схеме не показан один элемент, без которого работа механизма была бы невозможной, – датчик положения коленчатого вала. Именно ДПКВ позволяет ЭБУ рассчитывать количество воздуха, поступающего в двигатель. Напомним, что количество подаваемого топлива всецело зависит от массы воздуха, поступающего в цилиндры, иначе регулировать состав топливовоздушной смеси (ТПВС) для нормальной работы бензинового двигателя невозможно. На этапе создания двигателя конструкторами рассчитывается, сколько воздуха проходит при определенной нагрузке, то есть степени открытия дросселя, и на определенных оборотах двигателя. Данные заносятся в топливную карту двигателя, которая будет записана в ЭБУ. Впоследствии при работе двигателя блок управления фиксирует обороты с помощью ДПКВ, нагрузка определяется потенциометром дроссельной заслонки, что позволяет взять из топливной карты значение, соответствующее необходимому количеству топлива. Но система идеально может работать только в лабораторных условиях, поскольку на практике атмосферное давление зависит не только от положения над уровнем моря, но и от температуры, воздушный фильтр со временем забивается, пропуская через себя меньше воздуха, засоряется и сам дроссельный узел. Для коррекции используется датчик температуры воздуха, но роль его невелика. По-настоящему на состав смеси влияет лямбда-зонд, измеряющий количество кислорода в выхлопных газах. Если кислорода слишком много, ЭБУ понимает, что смесь необходимо обогатить, и наоборот.

Характеристика

Главное преимущество одноточечного впрыска – дешевизна реализации. Недостатки:

  • неравномерное наполнение цилиндров, что обусловлено месторасположением форсунки;
  • «мокрый» коллектор. При открытии форсунки бензин преодолевает долгий путь до камеры сгорания. Когда коллектор холодный, топливо не испаряется, а оседает на стенках, вследствие чего смесь необходимо сильно богатить;
  • лямбда-зонд хоть и позволяет корректировать ТПВС, но способ измерения массы воздуха в целом неэффективен.

Multi-Point fuel injection

Многоточечный впрыск стал значительным шагом вперед, по сравнению с одноточечным впрыском, поскольку позволил автомобилям вкладываться в нормы токсичности ЕВРО-3.

Одноточечный впрыск, ввиду неизлечимых болезней, обусловленных особенностями конструкции, мог выполнить только требования ЕВРО-2.

История эволюции систем впрыска автомобилей крайне интересна, но не она является главной темой этой статьи. Именно поэтому уделять внимание тонкостям работы таких систем управления двигателем с распределенным впрыском, как D-Jetronic, KE-Jetronic, K-Jetronic и L-Jetronic мы не будем. Устанавливать на авто перечисленные вариации перестали еще в начале 90-х, а поэтому встретить автомобиль с «живой» системой распределительного впрыска такого типа крайне сложно.

Главное отличие полноценного инжектора от моновпрыска – наличие 4-х форсунок, расположенных вблизи впускных клапанов. Компоненты инжекторного двигателя:

  1. топливный насос, который в подавляющем большинстве случаев расположен в баке;
  2. – фильтр грубой очистки топлива;
  3. – регулятор давления топлива, от которого к баку идет магистраль обратки для слива лишнего топлива. В некоторых авто обратная магистраль отсутствует как таковая, а регулятор топлива находится рядом с насосом в баке;
  4. – форсунка. На рисунке сверху показано, как все форсунки соединены топливной рампой;
  5. – расходомер воздуха;
  6. – датчик температуры охлаждающей жидкости;
  7. – регулятор холостого хода (РХХ);
  8. – потенциометр, фиксирующий фактическое положение дроссельной заслонки (ДПДЗ);
  9. – датчик частоты вращения коленчатого вала (ДПКВ);
  10. – кислородный датчик;
  11. – ЭБУ;
  12. – распределитель зажигания.

Расчет массы воздуха

Помимо форсунок, особенностью системы является способ расчета массы воздуха. Существует всего 5 способов измерения количества воздуха, проходящего через дроссельную заслонку:


Характеристика

Преимущества распределительного впрыска на клапаны:

  • равномерное наполнение цилиндров;
  • использование ДМРВ или MAP-сенсора позволяет точно рассчитывать расход воздуха, что дает больше возможностей для регулировки ТПВС на всех режимах работы мотора.

Именно поэтому автомобили с полноценным инжектором всегда мощнее и экономичнее авто с одноточечным впрыском.

Непосредственный впрыск, являющийся разновидностью системы распределительного впрыска, – последнее слово в системах питания бензиновых двигателей. Главной особенностью прямого впрыска является подача топлива непосредственно в камеру сгорания.

GDI, FSI, D4 – аббревиатуры, использующиеся Mitsubishi, Volkswagen и Toyota, соответственно, для обозначения двигателей с непосредственным впрыском. Система питания таких ДВС больше походит на дизельные моторы, нежели на привычные всем ДВС цикла Отто. Устройство:

Чем обусловлена эффективность

Дороговизна и сложность производства, являющиеся главными недостатками прямого впрыска, с лихвой окупаются чрезвычайной экономичностью и мощностными характеристиками. Достигается это за счет того, что мотор может работать на 3-х основных вариантах топливной смеси (в качестве примера выбрана система GDI):

  • сверхбердная смесь. Топливо впрыскивается в конце такта сжатия и сгорает в непосредственной близости к свече зажигания, в то время как вокруг зоны сгорания в камере сгорания находится преимущественно чистый воздух либо смесь воздуха с выхлопными газами, за подачу которых отвечает EGR;
  • стехиометрическая. Топливо подается на такте впуска, хорошо перешивается с воздухом, образуя смесь близкую к идеальному пропорциональному соотношению (14,7/1) во всей камере сгорания;
  • мощностной режим, при котором ТПВС приготавливается в два этапа. Небольшое количество топлива подается на такте впуска, но основная порция впрыскивается в конце такта сжатия.

За счет подачи топлива в жидкой фазе непосредственно в камеру сгорания двигатели с прямым впрыском менее склонны к , что позволяет повысить степень сжатия и увеличить КПД двигателя.


Сейчас практически на любом бензиновом моторе легкового автомобиля, используется инжекторная система питания, которая пришла на смену . Инжектор благодаря ряду рабочих характеристик превосходит карбюраторную систему, поэтому он является более востребованным.

Немного истории

Активно устанавливаться такая система питания на автомобилях стала со средины 80-х годов, когда начали вводиться нормы экологичности выбросов. Сама идея инжекторной системы впрыска топлива появилась значительно раньше, еще в 30-х годах. Но тогда основная задача крылась не в экологичном выхлопе, а повышении мощности.

Первые инжекторные системы применялись в боевой авиации. На то время, это была полностью механическая конструкция, которая вполне неплохо выполняла свои функции. С появлением реактивных двигателей, инжекторы практически перестали использоваться в военной авиатехнике. На автомобилях же механический инжектор особо распространения не получил, поскольку он не мог полноценно выполнять возложенные функции. Дело в том, что режимы двигателя автомобиля меняются значительно чаще, чем у самолета, и механическая система не успевала своевременно подстраиваться под работу мотора. В этом плане карбюратор выигрывал.

Но активное развитие электроники дало «вторую жизнь» инжекторной системе. И немаловажную роль в этом сыграла борьба за уменьшение выброса вредных веществ. В поисках замены карбюратору, который уже не соответствовал нормативам экологии, конструкторы вернулись к инжекторной системе впрыска топлива, но кардинально пересмотрели ее работу и конструкцию.

Что такое инжектор и чем он хорош

Инжектор дословно переводится как «впрыскивание», поэтому второе название его – система впрыска с помощью специальной форсунки. Если в карбюраторе топливо подмешивалось к воздуху за счет разрежения, создаваемого в цилиндрах мотора, то в инжекторном моторе бензин подается принудительно. Это самое кардинальное различие между карбюратором и инжектором.

Достоинствами инжекторного двигателя, относительно карбюраторных, такие:

  1. Экономичность расхода;
  2. Лучший выход мощности;
  3. Меньшее количество вредных веществ в выхлопных газах;
  4. Легкость пуска мотора при любых условиях.

И достигнуть этого всего удалось благодаря тому, что бензин подается порционно, в соответствии с режимом работы мотора. Из-за такой особенности в цилиндры мотора поступает топливовоздушная смесь в оптимальных пропорциях. В результате, практически на всех режимах работы силовой установки в цилиндрах происходит максимально возможное сгорание топлива с меньшим содержанием вредных веществ и повышенным выходом мощности.

Видео: Принцип работы системы питания инжекторного двигателя

Виды инжекторов

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электронные элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же .

Всего существует три типа инжекторных систем впрыска, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.

1. Центральная

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

2. Распределенная

Распределенный впрыск топлива

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У такого типа инжекторных двигателей топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

3. Непосредственная

Система непосредственного впрыска топлива

Система непосредственного впрыска на данный момент – самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она сложная по конструкции и очень требовательна к качеству бензина.

Конструкция и принцип работы инжектора

Поскольку система распределенного впрыска – самая распространенная, то на именно на ее примере рассмотрим конструкцию и принцип работы инжектора.

Условно эту систему можно разделить на две части – механическую и электронную. Первую дополнительно можно назвать исполнительной, поскольку благодаря ей обеспечивается подача компонентов топливовоздушной смеси в цилиндры. Электронная же часть обеспечивает контроль и управление системой.

Механическая составляющая инжектора

Система питания автомобилей ВАЗ 2108, 2109, 21099

К механической части инжектора относится:

  • топливный бак;
  • электрический ;
  • фильтр очистки бензина;
  • топливопроводы высокого давления;
  • топливная рампа;
  • форсунки;
  • дроссельный узел;

Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

Видео: Инжектор

Принцип работы инжектора

Что касается назначения каждого из них, то все просто. Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенной со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

Раньше форсунки были полностью механическими, и срабатывали они от давления топлива. При достижении определенного значения давления топливо, преодолевая усилие пружины форсунки, открывало клапан подачи и впрыскивалось через распылитель.

Современная форсунка – электромагнитная. В ее основе лежит обычный соленоид, то есть проволочная обмотка и якорь. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

Электронная составляющая

Основным элементом электронной части инжекторной системы подачи топлива является электронный блок, состоящий из контролера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

Для своей работы ЭБУ использует показания датчиков:

  1. . Это датчик, который определяет остатки несгоревшего воздуха в выхлопных газах. На основе показаний лямбда-зонда ЭБУ оценивает как соблюдается смесеобразование в необходимых пропорциях. Устанавливается в выпускной системе авто.
  2. Датчик массового расхода воздуха (аббр. ДМРВ). Этим датчиком определяется количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами. Расположен в корпусе воздушного фильтрующего элемента;
  3. (аббр. ДПДЗ). Этот датчик подает сигнал о положении педали акселератора. Установлен в дроссельном узле;
  4. Датчик температуры силовой установки. На основе показаний этого элемента регулируется состав смеси в зависимости от температуры мотора. Располагается возле термостата;
  5. (аббр. ДПКВ). На основе показаний этого датчика определяется цилиндр, в который необходимо подать порцию топлива, время подачи бензина, и искрообразование. Установлен возле шкива коленчатого вала;
  6. . Необходим для выявления образования детонационного сгорания и принятия мер для его устранения. Расположен на блоке цилиндров;
  7. Датчик скорости. Нужен для создания импульсов, по которым высчитывается скорость движения авто. На основе его показаний делается корректировка топливной смеси. Установлен на коробке передач;
  8. Датчик фаз. Он предназначен для определения углового положения распредвала. На некоторых автомобилях может отсутствовать. При наличии этого датчика в двигателе выполняется фазированный впрыск, то есть, импульс на открытие поступает только для конкретной форсунки. Если этого датчика нет, то форсунки работают в парном режиме, когда сигнал на открытие подается сразу на две форсунки. Установлен в головке блока;

Теперь коротко от том, как все работает. Элекробензонасос заполняет всю систему топливом. Контролер получает показания от все датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

Что касается подачи топлива, то на основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

Рассмотрим инжектор двигателя (его устройство и принцип работы) взяв в качестве примера электронную систему распределенного впрыска.

Впрысковые инжекторные двигатели , которые производятся в настоящее время, оснащаются индивидуальными форсунками для каждого цилиндра. Форсунки соединены с топливной рампой, в которой под давлением находится топливо, подаваемое электрическим бензонасосом. В зависимости от времени в течении которого форсунки находятся в открытом положении, меняется количество впрыскиваемого топлива. Электронный блок управления (так называемые контроллер) регулирует открытие форсунок, основываясь на информации, полученной от различных датчиков.

Датчик массового расхода воздуха необходим для расчета циклового наполнения цилиндров. С помощью этого датчика происходит измерение массового расхода воздуха. Затем полученная информация пересчитывается программой в цилиндровое цикловое наполнение. В случае поломки датчика его показания системой не учитываются, и расчет производится по аварийным таблицам.

Датчик положения дроссельной заслонки рассчитывает фактор нагрузки на двигатель инжектор, а также его изменения в зависимости от оборотов двигателя, угла открытия дроссельной заслонки и циклового наполнения.

Датчик температуры охлаждающей жидкости необходим для определения коррекции топливоподачи и зажигания в зависимости от температуры, а также для управления вентилятором. В случае неисправности данного датчика его показания системой не учитываются, а показания температуры берутся в соответствии с таблицей в зависимости от времени работы двигателя инжектора.

Датчик определения положения коленчатого вала выполняет общую синхронизацию системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ является полярным датчиком. Если датчик включен не правильно, то инжекторный двигатель не будет заводится. В случае поломки датчика система не будет работать. Датчик определения положения коленчатого вала является единственным датчиком в системе , в случае поломки которого автомобиль не тронется с места. Неполадки в работе остальных датчиков не являются критическими и без них возможно своим ходом добраться до автосервиса.

Датчик кислорода определяет концентрацию кислорода в отработавших газах. Датчик посылает информацию в электронный блок управления для дельнейшей коррекции количества подаваемого топлива. Этот датчик используется исключительно в системах с каталитическим нейтрализатором под нормы токсичности Евро-2 и Евро-3. Причем для Евро-3 применяются два датчика кислорода, один устанавливается до катализатора, а второй после него.

Датчик детонации необходим для контроля за возможной детонацией. В случае обнаружения возможной угрозы детонации ЭБУ запускает алгоритм гашения детонации, при этом система корректирует угол опережения зажигания.

Существует еще ряд различных датчиков, которые необходимы для нормальной работы системы. Для различных моделей автомобилей подбирается определенная комбинация датчиков в зависимости от норм токсичности, системы впрыска и так далее.

Программа ЭБУ на основании произведенных опросов установленных датчиков в программе, осуществляет управление различными исполнительными механизмами. К ним относятся: модуль зажигания, бензонасос, форсунки, регулятор холостого хода, вентилятор системы охлаждения, клапан адсорбера системы улавливания паров бензина и прочие, в зависимости от модели автомобиля.

Если о большинстве названных устройств имеется хотя бы малейшее представление, то об адсорбере не специалист редко слышал. Адсорбер - элемент замкнутой цепи рециркуляции паров бензина. Согласно нормам Евро-2, контакт вентиляции бензобака с атмосферой запрещен, а бензиновые пары должны адсорбироваться (то есть собираться) и в процессе продувки направляться в цилиндры для дальнейшего дожига. При выключенном двигателе бензиновые пары из бака и впускного коллектора попадают в адсорбер, где они поглощаются. Во время запуска двигателя, по команде ЭБУ, адсорбер начинает продуваться потоком воздуха, который всасывается двигателем. Под действием воздушного потока, пары увлекаются в камеру сгорания и там дожигаются.

Виды инжекторных двигателей.

Системы впрыска зависят от места подачи топлива и количества форсунок. Они бывают трех типов:

  • одноточечная (моновпрыск). Одна форсунка устанавливается на впускной коллектор на все цилиндры.
  • многоточечный (распределенный). При таком типе двигателя, каждый цилиндр оснащается своей форсункой, подающей топливо в коллектор)
  • непосредственный. В этом случае топливо подается непосредственно в цилиндры с помощью форсунок. Примером могут служить дизельные инжекторные двигатели .

Системы впрыска инжекторных двигателей.

Моновпрыск является самым простым видом. В нем небольшое количество управляющей электроники. Недостатком является его небольшая эффективность, поскольку управляющая электроника позволяет контролировать поступающую информацию с датчиков и, в случае необходимости, влиять на параметры впрыска. Достоинством одноточечного прыска является тот факт, что под него можно легко адаптировать карбюраторные двигатели обойдясь практически без существенных переделок конструкции или технологических изменений при производстве. Также монопрыск обладает по сравнению с карбюратором позволяет сэкономить топливо, является более экологически чистотым и является относительно стабильным и надежным по своим параметрам. Однако одноточечный впрыск уступает приёмистости инжекторного двигателя . Кроме того, в результате работы моновпрыска около 30% бензина остается в качестве осадка на стенках коллектора.

Безусловно, система моновпрыска является большим прорывом в сравнении с карбюраторной системой питания, однако в настоящее время уже не в состоянии удовлетворять современные требования.

Многоточечный впрыск является более совершенной системой подачи топлива, при которой оно подается отдельно к каждому цилиндру. Данная система подачи топлива значительно мощнее, экономичнее, но при этом и сложнее. Многоточечный впрыск позволяет увеличить мощность инжекторного двигателя примерно на 7-10 процентов. Основными достоинствами распределенного впрыска можно считать:

  • можно автоматически настроить подачу топлива при различных оборотах и в результате, улучшить наполнение цилиндров. Как следствие, это позволит при одинаковой мощности автомобиля разогнаться быстрее.
  • поскольку впрыск топлива происходит в непосредственной близости от впускного клапана, значительно уменьшается его количество, которое оседает на стенках впускного коллектора. В результате появляется возможность более точной регулировки подачи топлива.

Является более эффективным средством в оптимизации сгорания смеси и повышения КПД бензинового инжекторного двигателя . Его работа основывается на простых принципах:

  • топливо тщательнее распыляется, а значит лучше перемешивается с воздухом и более грамотно распоряжается готовой смесью на разных режимах работы двигателя. В результате, инжекторный двигатель с непосредственным впрыском потребляет меньший объем топлива, чем обычные «впрысковые» моторы. Это становится особенно заметно при спокойной езде на небольшой скорости;
  • при равных рабочих объемах двигателей, позволяет разгоняться значительно быстрее;
  • является более экологичным;
  • в результате большей степени сжатия и одновременного эффекта охлаждения воздуха при испарении топлива в цилиндрах, гарантируется более высокая литровая мощность.

Необходимо учитывать, что данный вид инжекторного двигателя требует качественный бензин с низким уровнем содержания серы и прочих механических примесей. Это является обязательным условием для обеспечения нормальной работы топливной системы.

Понравилось? Лайкни нас на Facebook