Стандартные стойки. Определение неисправности источника постороннего стука в автомобиле Дефектовка стоек

Неисправные амортизаторы приводят к быстрому износу смежных элементов. Таким образом, осматривайте опоры стойки подвески, отбойники рессоры и пружины подвески при каждой проверке амортизатора. При замене амортизатора также заменяйте опоры стойки подвески и отбойники рессоры.

Именно амортизаторы обеспечивают контакт колес с дорогой и обеспечивают контроль кузова, в большинстве влияя на все поведение автомобиля в движении.

Автомобиль, колесо которого лишено хорошего контакта с дорогой, не может тормозить, разгоняться или поворачивать - он становится неуправляемым. Сжатые весом кузва, пружины стремятся раскрыть подвеску, как только под колесом возникает свободное пространство, но, ударившись о покрытие, колесо так же быстро отскакивает назад. Колебания повторяются, автомобиль встречает новые препятствия и ямы и, если бы не амортизаторы, при скоростях больше 20-30 км/час управлять им стало бы невозможно.

Исправные амортизаторы являются ведущим элементом активной безопасности. Острота ситуации заключается в том, что водители, зачастую, не осознают важности исправности и качества и характеристик работы амортизаторов, и в том, что износ амортизаторов происходит постепенно, часто без видимых или слышимых признаков.

Водитель привыкает к постепенному изменению поведения автомобиля, но в тот момент, когда нужно будет перестроиться или уйти от неожиданно появившегося препятствия, встречного автомобиля или поворот окажется круче, чем он выглядел, виноваты будут не амортизаторы, а водитель, несправившийся с управлением.

Чем менее исправны амортизаторы, тем больше времени колесо проводит в воздухе, а не в контакте с дорогой. В результате увеличивается тормозной путь, снижается скорость безопасного прохождения поворотов и порог начала аквапланирования, происходит интенсивный износ шин, узлов ходовой части, ухудшается освещение дороги и происходит ослепление встречных водителей.

Особенно плохо влияют неисправные амортизаторы на антиблокировочные и противобуксовочные системы, системы курсовой устойчивости, traction control. Их датчики настроены на отслеживание поведения колес, катящихся по покрытию, а не вращающихся в воздухе. Частая индикация срабатывания этих систем в некритичных ситуациях - тревожный сигнал, информирующий о плохом контакте колес с покрытием, а в этом случае электронные ситемы имеют низкую эффективность.

Амортизаторы - сложные устройства, имеющие нелинейную характеристику работы в двух направлениях. Поэтому, от качества материалов, изготовления и, главное, их настройки, завист поведение автомобиля - комфорт, управляемость и безопасность.

увеличение тормозного пути, особенно на разбитых дорогах
Слева автомобиль с исправными амортизаторами, справа автомобиль с неисправными амортизаторами. Тормозной путь автомобиля с неисправными амортизаторами увеличивается от 5 до 25 метров (в зависимости от скорости).
«переставки» машины в поворотах, особенно на неровном покрытии
Слева автомобиль с исправными амортизаторами, справа автомобиль с неисправными амортизаторами "переставляет" по дороге при поворотах.
появление сильных «клевков» при экстренном торможении
При неисправных амортизаторах клевок при торможении очень большой, что увеличивает тормозной путь.
Возникновение сильных кренов с отрывом колёс от дорожного полотна, а также непослушание рулю при экстренных маневрах
Эффект аквапланирования возникает раньше, т.е. на меньших скоростях при неисправности одного из амортизаторов, может возникнуть неуправляемый занос автомобиля.









Дефект: Масляный туман на амортизаторе
При каждом ходе поршня забирается небольшое количество масла, предназначенного для смазки сальника. На сухом штоке каждого амортизатора можно увидеть так называемый масляный туман – конденсат из масла.
Скопление конденсата не означает, что амортизатор неисправен. Более того, незначительное запотевание является нормальным и даже необходимым, ведь оно помогает обеспечить герметичность амортизатора
Дефект: амортизатор негерметичен.
Этот вид дефекта возникает из-за некорректной эксплуатации амортизатора. При длительной непрерывной эксплуатации уплотнители штока в поршне начинают изнашиваться. Также это может случиться из-за большой нагрузки на поршень или попадания в него грязи или песка.
Дефект: на амортизаторе присутствуют следы антикоррозийной обработки а/м.
Этот дефект опасен для машины тем, что нарушает отведение тепла и уменьшает демпфирующее усилие, а также способствует утечке масла. Неисправность может возникать из-за некорректной эксплуатации, которая является следствием некомпетентности работников сервисного центра, проводивших обработку автомобиля антикоррозийными средствами.
Дефект: хромовое покрытие на штоке поршня протёрто, видны следы обгорания краски, несимметрично деформирован сальник.
Дефект проявляется при сильном затягивании амортизатора в положении сборки (например, при вывешенных колесах), а также из-за несоосных точек зажима (в случае деформации кузова).
Следствием дефекта является быстрый износ направляющей и уплотнения штока поршня, из-за чего поршень теряет производительность, а также происходит утечка масла. Чтобы этого не произошло, затягивать до упора амортизатор можно лишь когда машина уже стоит на колесах.
Дефект: шток поршня повреждён
Дефект штока может происходить при монтаже, когда шток удерживается щипцами, а также из-за некорректной установки самого амортизатора. Из-за этого может быть повреждена хромовая поверхность штока, что приводит к разрыву уплотнения, и, соответственно, к значительной потере производительности и утечке масла.
Правильный монтаж предполагает удерживание штока поршня специально предназначенными для этого инструментами.
Дефект: шарниры с упругими резиновыми элементами изношены и со следами ударов.
Неисправность вызвана ударами, следы которых остаются на шарнирах. Как правило, дефект возникает в результате постепенного износа детали, а также может быть следствием износа в результате попадания в деталь песка.
Еще одна причина – износ после езды с очень высоким дорожным просветом, когда в автомобиле неверно отрегулирована пневматическая подвеска.
Дефект: отпечатки резьбы во втулке
Еще одно следствие некорректной установки амортизатора, когда затяжка была недостаточной, и в итоге появился зазор между вершинами профиля резьбы и самой втулкой.
Дефект: Истертые места насадки амортизационной стойки.
Причина – использование старого резьбового соединения, а также слабая затяжка. В результате насадка начинает стучать по амортизационной стойке.
Дефект также является свидетельством некорректной установки самого амортизатора.
Дефект: резьбовое соединение оторвано.
Причина – избыточное напряжение металла, которое возникает из-за избыточного затягивания крепежной гайки. Еще одно доказательство некорректной установки амортизатора.
Дефект: проушина шарнира надорвана или полностью оторвана.
Этот дефект может возникнуть вследствие повреждения или отсутствия концевого ограничителя хода рессоры. Еще одна причина – неверная регулировка дорожного просвета. При этом амортизатор начинает выполнять функцию ограничителя, что перегружает его.

Основные сведения

Амортизатор – достаточно сложная, с технической точки зрения, деталь автомобиля. Если диагностику большинства элементов подвески можно провести “с помощью монтировки”, то для определения неисправностей амортизаторов, а тем более выявления причин этих неисправностей, часто необходимо тестирование на специальных стендах.

Опыт крупных компаний-продавцов амортизаторов показывает, что основной причиной выхода амортизаторов из строя является их непрофессиональная установка или нарушение условий эксплуатации.

Практика показывает, что заводской брак в амортизаторах иностранного производства редко превышает 0,5%. Тем не менее, при возникновении дефекта амортизатора, даже в случае доказанной вины установщика, у потребителя обычно складывается негативный имидж и магазина, продавшего амортизаторы, и самой марки амортизаторов. Поэтому для позитивного имиджа своей компании очень важно стараться исключить возможность возникновения любых случаев преждевременного выхода амортизаторов из строя.

На рисунке представлена конструкция амортизатора. Возможные места возникновения дефектов в амортизаторах отмечены цифрами 1 – 6.

Наиболее распространенные дефекты амортизаторов:

  1. Разрыв сальника штока амортизатора.
  2. Внутренние повреждения амортизатора: разрушение, выход из строя или естественный износ клапанного узла или поршня.
  3. Механическое повреждение амортизатора: трещина, вмятина в корпусе, искривление штока.
  4. Разрушение амортизатора: облом штока, отрыв крепежной проушины, деградация или разрушение сайлентблоков.
  5. Несоответствие свойств или деградация амортизаторной жидкости.
  6. Отсутствие газа в амортизаторе.

Причины возникновения тех или иных дефектов могут быть различными. Например, разрыв сальника штока может быть вызван и нарушением технологии установки (повреждением хромового покрытия штока), и износом пыльника амортизатора (коррозия штока при попадании влаги).

Существует несколько способов оценки работоспособности амортизаторов. Они различны по сложности и, соответственно, предполагают разную степень точности диагностики. Обычно, чем проще сам метод, тем менее точные результаты он дает. В последующих разделах приведены наиболее распространенные способы диагностики амортизаторов, ранжированные по точности результата, указаны дефекты, которые можно установить с их помощью, и причины возникновения этих дефектов.

https://www.cvvm.ru/ /) Колонтай Алексей

Диагностика по изменению устойчивости,
управляемости и жесткости подвески автомобиля

Амортизатор, как и любая деталь автомобиля, подвержен износу. Со временем характеристики амортизатора постепенно ухудшаются, но водитель не всегда сразу замечает это, так как приспосабливает свой стиль вождения под возможности автомобиля. Данный метод диагностики предполагает субъективную оценку степени износа амортизаторов экспертом. Оценка производится по ухудшению эксплуатационных характеристик автомобиля.

Автомобили различных марок и моделей имеют и различные параметры устойчивости, управляемости, жесткости подвески, которые закладываются в них еще на этапе конструкторской разработки. Также и у каждого водителя собственный стиль вождения и свои представления о необходимой жесткости подвески. Поэтому данные понятия всегда относительны и в каждом конкретном случае носят индивидуальный характер.

Таким образом, предлагаемый метод диагностики, хотя и позволяет оценить основные проблемы, связанные с амортизаторами, является достаточно субъективным. Большинство производителей амортизаторов в своих рекомендациях по диагностике неисправностей этих деталей советуют при использовании данного метода сравнивать “поведение” автомобиля с неким образцом, тот есть с абсолютно идентичным автомобилем, оснащенным исправными амортизаторами. Естественно, на практике это далеко не всегда представляется возможным.

В таблице указаны дефекты, которые можно диагностировать с помощью данного метода. Обычно данный метод диагностики дополняется визуальным осмотром амортизаторов.

Ощущения при езде Возможные причины
Подвеска автомобиля слишком мягкая (машина неустойчива в повороте, “плавает” на дороге, либо машинураскачивает) Установлены амортизаторы, не соответствующие данному автомобилю
Отсутствие амортизаторной жидкости в рабочей камере амортизатора
Изношен клапанный узел амортизатора
Внутренние повреждения амортизатора
Подвеска автомобиля слишком жесткая (автомобиль "прыгает" даже на мелких неровностях, неровности дороги передаются на кузов) Субъективные ощущения водителя
Установлены несоответствующие амортизаторы или пружины
Амортизатор “заклинило”
Амортизатор "замерз"
Стук в подвеске Люфт в крепежных узлах амортизатора
Внутренний дефект амортизатора
Дефект связан с другими элементами подвески
Оторвано крепление амортизатора

Диагностика при помощи раскачивания стоящего на месте автомобиля

Данный метод заключается в раскачивании кузова стоящего автомобиля и оценке состояния амортизаторов по количеству колебательных движений кузова до момента полной остановки.

Данный метод позволяет определить только два “крайних” состояния амортизатора: либо амортизатор полностью вышел из строя (сломана проушина или шток, износился клапанный узел, отсутствует амортизаторная жидкость в рабочей камере), либо амортизатор “подклинивает” или “заклинило” полностью. Попытки определить степень износа амортизатора, в этом случае, обречены на провал, так как усилие, развиваемое амортизатором, зависит от скорости движения штока. Кроме того, в различных автомобилях, как уже отмечалось выше, конструктивно заложены разные параметры жесткости подвески. У некоторых моделей автомобилей подвеска изначально достаточно “мягкая”.

При движении автомобиля скорость движения штока амортизатора значительно выше, чем та, которую Вам удастся достичь при раскачивании авто. Поэтому и определить степень износа амортизатора в данном случае невозможно.

Обычно такой способ выявления причин неисправностей амортизаторов дополняется еще и визуальным методом их диагностики.

Дополнение Предоставил преподаватель Центра Высшего Водительского Мастерства (https://www.cvvm.ru/) Колонтай Алексей

Следует учитывать, что существуют амортизатор с регрессивной и прогрессивной характеристиками гашения колебаний. Регрессивные хорошо гасят боковые(при прохождении поворотов) и продольные(при тор-можении) крены, и плохо поглощают мелкие дорожные неровности. Прогрессивные хорошо гасят мелкие неровности, но плохо себя чувствуют в поворотах и при торможении. Замена амортизаторов с регрессивной на амортизаторы, с прогрессивной характеристи-кой, может привести к повреждению элементов подвески автомобиля.

Проверка раскачиванием кузова малоэффективна из-за того, что шарниры подвески после длительной эксплуатации могут перемещаться с большим сопротивлением, которого будет достаточно для быстрого гашения раскачивания. И наоборот, амортизаторы с прогрессивной характеристикой, по причине малого сопротивления на небольших скоростях перемещения кузова, будут медленно гасить колебания даже в исправном состоянии.

Визуальный метод диагностики амортизаторов

Это наиболее распространенный метод, который, в совокупности с первыми двумя способами диагностики, позволяет, в большинстве случаев, выяснить истинные причины выхода амортизатора из строя. С помощью данного метода невозможно точно установить только причины повреждений и разрушений внутренних частей амортизатора. Важно знать, что одним из наиболее часто встречающихся дефектов внутренних частей амортизатора является их естественный износ.

При использовании визуального метода диагностики часто приходится снимать установленный на автомобиль амортизатор, что, как правило, влечет за собой значительные трудозатраты, а следовательно, и расходы. Необходимо отметить, что при работе амортизатора масляный “туман” на его корпусе и штоке, считается нормой. При этом капель и подтеков масла на корпусе или штоке быть не должно.

В таблице указаны дефекты, которые могут быть определены с помощью данного метода

Дефект 1 Дефект 2 Причина Действия
Масло на корпусе и штоке амортизатора. Видны капли и подтеки Не обнаружено Естественный износ уплотнения Замена амортизатора
Коррозия штока амортизатора. Разрыв уплотнителя штока амортизатора Коррозия вызвана износом пыльника амортизатора и связана с попаданием воды и грязи на шток Замена амортизатора
Царапины на штоке амортизатора. Разрыв уплотнителя штока амортизатора Повреждение штока амортизатора в связи с нарушением технологии установки Замена амортизатора
Протерто хромовое покрытие штока амортизатора. Разрыв уплотнителя штока амортизатора Шток амортизатора работает на излом. Не соблюдена технология установки амортизатора или нарушена геометрия кузова автомобиля вследствие аварии или удара Замена амортизатора
Корпус амортизатора обработан антикоррозийной мастикой Износ уплотнителя амортизатора из-за перегрева амортизатора Замена амортизатора
Оторвано крепление амортизатора - Усталостное разрушение амортизатора в связи с длительной эксплуатацией Замена амортизатора
- Экстремальная нагрузка на амортизатор (удар подвески) Замена амортизатора
Амортизатор не имеет подтеков и капель масла, но при движении автомобиля слишком “мягкий” Износ, разрушение клапанов Естественный износ или экстремальные нагрузки (удар подвески) Замена амортизатора
Шток амортизатора погнут или сломан Сильное механическое воздействие на амортизатор Сильный удар подвески, нарушение геометрии кузова автомобиля в результате аварии Замена амортизатора
Чрезмерное усилие при креплении штока амортизатора Несоблюдение технологии монтажа Замена амортизатора
Допущен перекос при установке амортизатора Несоблюдение технологии монтажа или нарушение геометрии кузова Замена амортизатора
Механическое повреждение корпуса, вмятина на корпусе амортизатора Сильное механическое воздействие на амортизатор Попадание камня, нарушение геометрии кузова автомобиля в результате аварии Замена амортизатора
Амортизатор “заклинило” Амортизатор не имеет внешних дефектов Внутреннее повреждение амортизатора Замена амортизатора
Амортизатор "замерз" (в зимний период). Загустение амортизаторной жидкости Результат попадания воды или применения некачественной амортизаторной жидкости Отогреть амортизатор, при нагреве жидкость восстанавливает свои свойства
Не происходит автоматическое выдвижение штока газового амортизатора - Отсутствие газа в амортизаторе: результат повреждения уплотнения штока или естественный износ Замена амортизатора
Большой свободный ход штока амортизатора Нехватка амортизаторной жидкости Утечка амортизаторной жидкости через уплотнение штока Замена амортизатора
Стук в амортизаторе Внутренние повреждения Экстремальные нагрузки Замена амортизатора
Потертости картриджа в амортизаторной стойке Картридж не был жестко закреплен к стойке Разобрать стойку и заново собрать ее, соблюдая технологию сборки
Износ и разрушение резиновых втулок в крепежных проушинах амортизатора Не соблюдены моменты затяжки при установке амортизаторов. Использованы амортизаторы, не подходящие к данному автомобилю. Естественный износ втулок Замена втулок

Диагностика амортизаторов на “шок-тестере”

Шок-тестер – стенд для проверки амортизаторов, принцип работы которого заключается в том, что одна из осей автомобиля раскачивается с определенной частотой и амплитудой, после чего определяется скорость затухания колебаний. Данный метод позволяет определить степень износа амортизаторов относительно эталона. Таким эталоном служат заложенные в компьютер диагностического стенда значения величины затухания, соответствующие аналогичным значениям нового амортизатора, установленного на автомобиль на сборочном конвейере. “Минусом” этого метода является то, что стенд диагностирует не столько состояние амортизаторов, сколько общее состояние подвески автомобиля. Поэтому некоторые производители амортизаторов не признают результаты такого тестирования как диагностику амортизаторов.

Проверка амортизатора на диагностическом стенде

Это наиболее точный и наиболее дорогой способ диагностики амортизаторов. Он применяется, в основном, при экспертизе амортизатора для определения причин выхода его из строя, когда повреждения касаются внутреннего устройства. Максимальная точность диагностики при данном методе достигается тем, что тестируется именно амортизатор, а не вся подвеска, как при диагностике на “шок-тестере”.

Рассматриваемый метод состоит в том, что снятый с автомобиля амортизатор устанавливают на специальный диагностический стенд, где определяют его характеристики и сравнивают их с характеристиками, указанными в технической документации на данную модель амортизаторов. По несоответствию характеристик определяют причины выхода амортизатора из строя.

Такую услугу оказывают почти все российские представительства производителей амортизаторов. Но сроки прохождения процедуры диагностирования амортизатора на стенде могут составлять до трех месяцев. Это связано с тем, что такие тесты проводятся в лаборатории завода-изготовителя амортизаторов или в исследовательских центрах, которые в основном расположены за рубежом. Поэтому большинство представительств в спорных случаях обычно принимают решение в пользу клиента, чтобы избежать длительной процедуры пересылки амортизаторов на завод-изготовитель для диагностики.

Диагностика дефектов новых и только что установленных амортизаторов

Практика показывает, что подавляющее большинство дефектов амортизаторов проявляется уже при их установке или в первые дни эксплуатации. Поэтому необходимо иметь полное представление о специфических дефектах, возникающих при непрофессиональной установке и о возможных заводских дефектах амортизаторов.

В таблице представлены основные дефекты, которые могут возникать при установке новых амортизаторов, а также виды заводского брака.

Наблюдаемый дефект Причина Действия
Видны масляные капли или подтеки на корпусе и штоке нового амортизатора Если после вытирания подтеки не возобновляются, то это консервационная смазка амортизатора Амортизатор исправен
Видны масляные капли или подтеки на корпусе и штоке установленного амортизатора На хромированном штоке амортизатора видны механические повреждения – следы несоблюдения технологии установки, приводящие к разрыву уплотнения штока Замена амортизатора
На хромированном штоке амортизатора видны потертости – допущен перекос при установке амортизатора, приведший к разрыву уплотнения Замена амортизатора
Заводской брак Замена амортизатора
При установке новых амортизаторов появляется стук в подвеске В связи с увеличением жесткости подвески, увеличивается нагрузка на все ее элементы Диагностика подвески и замена вышедших из строя элементов
Недостаточные моменты затяжки крепежных узлов амортизатора Проверка моментов затяжки. Замена, в случае разрушения, крепежных узлов амортизатора
Картридж недостаточно жестко закреплен внутри амортизаторной стойки Разобрать стойку и собрать ее с соблюдением технологии монтажа
Не закреплен грязезащитный щиток Снять амортизатор и провести монтаж с соблюдением технологии
Заводской брак Замена амортизатора
При “прокачивании” нового амортизатора ощущается провал Воздух в рабочем цилиндре амортизатора. Амортизатор хранился в горизонтальном положении Амортизатор исправен. Проблема сама устранится после нескольких циклов отбоя/сжатия
Заводской брак Замена амортизатора
Амортизатор слишком жесткий, мягкий или имеет слишком короткий ход. Установлен амортизатор, не подходящий к данной модели автомобиля, установлен спортивный амортизатор. Пользуйтесь услугами профессионалов при выборе амортизаторов
Облом штока при монтаже Несоблюдение момента затяжки, рекомендованного в руководстве по ремонту Замена амортизатора
Облом штока при эксплуатации Перекос амортизатора при установке Замена амортизатора

После очистки детали подвергают контролю и сортировке (дефектовке).

Дефектовка -.определение технического состояния деталей; сортировка их на годные, требующие ремонта и негодные; определение маршрута для деталей, требующих ремонта.

К годным относятся детали, у которых отклонения в размерах и форме находятся в пределах допускаемого износа, указанною в технических условиях на ремонт машины.

Подлежат ремонту детали, износ которых выше допустимого, или имеются другие восстанавливаемые дефекты.

Негодными деталями являются те, восстановление которых невозможно или экономически нецелесообразно вследствие большого износа и других серьезных дефектов (деформации, изломы, трещины).

Причинами выбраковки деталей в основном являются разнообразные виды износов, которые определяются следующими факторами:
конструктивным - предельное изменение размеров деталей ограничено их прочностью и конструктивным изменением сопряжения;
технологическим - предельное изменение размеров деталей ограничивается неудовлетворительным выполнением ею служебных функций в работе узла или агрегата (так, износ шестерен насоса не обеспечивает давления или производительности нагнетания и др.);

качественным - изменение геометрической формы деталей при износе ухудшает работу механизма или машины (износ молотков, щек дробилок и др.);

экономическим - допустимое уменьшение размеров деталей ограничивается снижением производительности машины, увеличением потери передаваемой мощности на трение в механизмах, увеличением расхода смазки и другими причинами, что оказывает влияние на себестоимость выполняемой работы.

Дефектовка деталей оборудования осуществляется в соответствии с техническими условиями, которые включают: общую характеристику детали (материал, термическая обработка, твердость и основные размеры); возможные дефекты, допустимый без ремонта размер; предельно допустимый размер детали для ремонта; признаки окончательного брака. Кроме того, в технических условиях приводятся указания о допускаемых отклонениях от геометрической формы (овальность, конусность).

Технические условия на дефектовку оформляются в виде специальных карт, в которых кроме перечисленных данных, указываются способы восстановления и ремонта деталей.

Приводимые в технических условиях данные, относящиеся к допустимым и предельным значениям износов и размеров, должны основываться на материалах по
изучению износов с учетом условий работы деталей.

Детали дефектуют и контролируют визуально и при помощи мерительного инструмента, а в отдельных случаях с применением приспособлений и измерительных приборов. Визуально проверяют общее техническое состояние деталей и выявляют видимые внешние дефекты. Для лучшего обнаружения поверхностных дефектов, рекомендуется предварительно тщательно очистить поверхность и затем протравить ее 10-20%-ным раствором серной кислоты. Кроме того, при визуальном методе дефекты обнаруживают посредством остукивания и ощупывания деталей.

Контроль скрытых дефектов осуществляют гидравлическим, пневматическим, магнитным, люминесцентным и ультразвуковым м о годами, а также рентгеновскими лучами.

Гидравлический и пневматический методы дефектовки применяют для контроля деталей и узлов на герметичность (водо- и газонепроницаемость) и выявления трещин в корпусных деталях, сосудах. Для этого используют специальные стенды, оснащенные емкостями и насосными системами.

Магнитный метод дефектовки деталей основан на появлении магнитного поля рассеяния при прохождении через дефектную деталь магнитного потока. В результате на их поверхности под этими дефектами изменяется направление линий магнитного поля (рис. 22) вследствие неодинаковой магнитной проницаемости.

/ способ контроля - для обнаружения дефектов (трещин и др.) поверхность детали покрывают ферромагнитным порошком (прокаленная окись железа-крокус) или суспензией, состоящей из двух частей керосина, одной части трансформаторного масла и 35-45 г/л ферромагнитного мелкодробленого порошка (окалины). Для более четкого обнаружения возмущения магнитного поля на светлых деталях рекомендуется применяв черные магнитные порошки, на темных поверхностях - красные. Этот вид контроля более чувствителен при выявлении внутренних дефектов детали и применяется при неизвестных магнитных характеристиках материала детали.

2 способ контроля - выявление поверхностных трещин и мелких и средних деталях, изготовленных только из высокоуглеродистых и легированных сталей. Он производительнее и удобнее I способа. Для лучшего выявления дефектов применяют различные виды намагничивания деталей. Поперечные трещины лучше выявляются при
продольном намагничивании, а продольные и расположенные под углом - при циркулярном намагничивании.

Продольное намагничивание ведется в поле электромагнита или

Рис. 23. Схемы способов намагничивания деталей:

а, б - продольное; в. г - циркулярное; д, е -комбинированное; 1 - намагничиваемая деталь; 2 - электромагнит соленоида (рис. 23, а, б), циркулярное - пропусканием переменного или постоянного тока большой силы (2000-3000 А) через деталь или медный стержень, установленный в отверстие пустотелых деталей - втулки, пружины и др. (рис. 23, в, г). Для выявления дефекта любого направления за один прием используется комбинированное намагничивание (рис.23, д, е).

После магнитной дефектоскопии детали необходимо промыть в чистом трансформаторном масле и размагнитить. Схема прибора магнитной дефектоскопии показана на рис. 24. Прибор состоит из прибора для намагничивания 2, магнитного пускателя 3 и трансформатора 4.

Прибор для циркулярного намагничивания представляет собой стойку, к которой неподвижно закреплен стол с нижней контактной медной плитой и подвижная головка с контактным диском, перемещающимся по стойке. Деталь 1 плотно зажимают между контактным и плитой и включают трансформатор (или батарею аккумулятора). Ток от вторичной обмотки трансформатора напряжением 4-6 В подводится к медной плите и контактному диску и при контакте с деталью 1 происходит намагничивание, которое продолжается 1-2 с. Затем деталь погружают в ванну с суспензией на 1-2 мин, вынимают и осматривают для определения мест дефекта.

На ремонтных предприятиях наибольшее распространение получил универсальный магнитный
дефектоскоп типа М-217, который позволяет проводить циркулярное, продольное и местное намагничивание, магнитный контроль и размагничивание.

Дефектоскоп состоит из силовою агрегата, с помощью которого создается магнитное поле, намагничивающего устройства (контакты и соленоид) и ванны для магнитной суспензии.

Промышленность выпускает и другие магнитные дефектоскопы: стационарные - МЭД-2 и 77ПМД-ЗИ, а также переносной 77МД-1Ш и полупроводниковый ППД.

Переносные дефектоскопы позволяют контролировать детали непосредственно на машинах, особенно крупные детали, которые трудно или невозможно снять и исследовать с помощью стационарных установок.

Методом магнитной дефектоскопии можно контролировать лишь стальные и чугунные детали, устанавливая наружные и внутренние дефекты размером до 1-10 мкм.

Люминесцентный метод контроля деталей основан на способности некоторых веществ флюоресцировать (поглощать) лучистую энергию и отдавать ее в виде светового излучения в течение некоторого времени при возбуждении вещества невидимыми ультрафиолетовыми лучами.

Этим методом выявляют поверхностные дефекты типа волосяных трещин на деталях из немагнитных материалов. На поверхность исследуемой детали наносят слой флюоресцирующей жидкости, которая за JO-15 мин проникает во все поверхностные дефекты. После этого излишек жидкости удаляют с поверхности детали. Затем на
протертую поверхность наносят тонкий слой проявляющего порошка, который вытягивает из трещин и других дефектов проникшую туда флюоресцирующую жидкость. После облучения поверхности детали ультрафиолетовым светом те места, из которых была вытянута флюоресцирующая жидкость, начинают светиться, указывая на локализацию поверхностных дефектов.

В качестве флюоресцирующей жидкости применяют смесь из 85% керосина, 15% маловязкого минерального масла с добавкой 3 г на литр эмульгатора ОП-7, а проявляющие порошки состоят из окиси магния или селикогеля. Источниками ультрафиолетового излучения служат ртутно-кварцевые лампы типа ПРК-1, ПРК-4, 77ПЛУ-2 и СВДШ со специальным светофильтром УФС-3. Применяются также
переносная установка ЛЮМ-1 и стационарный дефектоскоп ЛДА-3.

С помощью люминесцентного метода можно определять поверхностные дефекты с размерами 1-30 мкм.

Ультразвуковой метод контроля основан на отражении ультразвуковых колебаний от имеющихся внутренних дефектов детали при про хождении их через металл вследствие резкого изменения плотности среды.

Рис. 25. Схемы действия ультразвуковых дефектоскопов:

а -теневой метод (дефект не обнаружен); б -теневой метод (дефект обнаружен);
- метод отражения

В ремонтном производстве существуют два способа ультразвуковой дефектоскопии: звуковой тени и отражения импульсов (сигналов). При способе звуковой тени (рис. 25, а, б) ультразвуковой генератор / воздействует на пьезоэлектрическую пластину 2, которая в
свою очередь действует на исследуемую деталь 3. Если по пути ультразвуковых волн 4 оказывается дефект 6, то они отразятся и не попадут на приемную пьезоэлектрическую пластинку 5, в результате чего за дефектом появится тень, которую отмечает регистрирующий прибор 7. "

При способе отражения (рис. 25, в) от генератора 12 через пьезоэлектрический излучатель 9 ультразвуковые волны передаются на деталь 3, проходя ее и отразившись от ее противоположного конца, возвращаются к приемному щупу 8. При наличии дефекта 6 импульсы ультразвука отразятся раньше. Попавшие на приемный щуп
8 и преобразованные в электрические сигналы импульсы подаются через усилитель 10 в электроннолучевую трубку 11. С помощью генератора развертки 13, включаемого одновременно с генераторо 12, сигналы получают горизонтальную развертку луча на экране трубки 11, где возникает начальный импульс в виде вертикального пика. Отражаясь от дефекта, волны более быстро возвращаются, и на экране появляется второй импульс, отстоящий от первого на расстоянии /j. Третий импульс соответствует сигналу, отраженному от противоположной стороны детали. Расстояние / 2 соответствует толщине детали, а расстояние / t - глубине залегания дефекта. Измеряя время от момента посылки импульса до момента приема эхо-сигнала, можно определить расстояние до внутреннего дефекта.

Для ремонтных целей используется усовершенствованный ультразвуковой дефектоскоп УЗД-7Н, выполненный по импульсной схеме и позволяющий вести контроль изделий по способу отраженных сигналов, а также по способу сквозного просвечивания (звуковой тени).
Максимальная глубина просвечивания для стали составляет 2,6 м при плоских и 1,3 м при призматических щупах, минимальная глубина 7 мм. Кроме того, наша промышленность выпускает ультразвуковые дефектоскопы ДУК.-5В, ДУК-6В, УЗД-ЮМ и др. с высокой чувствительностью, которые можно применять в ремонтном производстве.

Контроль рентгеновскими лучами основан на свойствах электромагнитных волн по-разному поглощаться воздухом и твердыми телами (металлами). Лучи, проходящие через материалы, незначительно теряют свою интенсивность, если на их пути встречаются пустоты в контролируемой детали в виде трещин, раковин и пор.
Спроектированные на экран выходные лучи покажут затемненные или более ярко освещенные места, отличающиеся от общего фона.
Эти пятна и полосы различной яркости указывают на дефекты в материале. Кроме рентгеновских лучей, в дефектоскопии применяют лучи радиоактивных элементов-гамма-лучи (кобальт-60, цезии-137 и др.). Данный способ сложен и поэтому на ремонтных предприятиях применяется редко (при контроле швов у корпуса вращающихся печей и мельниц и т. п.).

Дефектовка деталей краской широко используется в ремонтной практике при ремонте оборудования на месте установки его или в стационарных условиях при контроле крупных деталей типа рам, станин, картеров и др.

Сущность метода заключается в том, что обезжиренную бензином исследуемую поверхность детали окрашивают специальной ярко-красной.жидкостью, обладающей хорошей смачиваемостью и проникающей в мельчайшие дефекты (в течение 10-15 мин). Затем ее смывают с детали и последнюю окрашивают белой нитроэмалью, которая впитывает в себя проникшую в дефекты детали красящую жидкость. Жидкость, выступая на белом фоне детали, указывает на форму и величину дефектов. На этом принципе основано определение дефектов с помощью керосина и меловой обмазки.

Контроль и дефектовка различных деталей оборудования характеризуются определенными особенностями, при которых применяются специализированный инструмент и оборудование.

Валы. Наиболее часто встречающиеся дефекты валов - погнутость, износ опорных поверхностей, шпоночных канавок, резьб, шлицев, резьб, шеек и трещины.

Погнутость валов проверяют в центрах токарного или специального станка на биение, пользуясь для этой цели индикатором, укрепленным на специальной стойке.

Овальность и конусность шеек коленчатого пала определяют замером микрометра в двух сечениях, отстоящих от галтелей на расстоянии 10-15 мм. В каждом поясе измерение производят в двух перпендикулярных плоскостях. Предельные размеры посадочных мест, шлицев, шпоночных канавок оцениваются при помощи предельных скоб, шаблонов и другого мерительного инструмента.

Трещины валов выявляют внешним осмотром, магнитными дефектоскопами и другими методами. Валы и оси бракуют, если обнаружены трещины глубиной более 10% диаметра вала. Уменьшение диаметра шеек вала при проточке (шлифовке) в случае ударной нагрузки допускается не более чем на 5%, а при спокойной нагрузке-не
более 10%.

Зубчатые колеса. О пригодности зубчатых колес к работе судят в основном по износу зуба по толщине (рис. 26). Зубья замеряют по толщине штангензубомерами, тангециальными и оптическими зубомерами, шаблонами. Толщину зуба цилиндрических зубчатых колес

измеряют в двух сечениях. У каждого зубчатого колеса измеряют три зуба, расположенных один относительно другого под углом 120°. Перед началом замера наиболее изношенные зубья отмечают мелом. Предельный износ зуба по толщине (считая по начальной окружности) не должен превышать: для открытых передач (III-IVклассов) Подшипники качения. Для контроля подшипников качения применяют приспособления разных типов, на которых определяют радиальные и осевые люфты в подшипниках. Радиальный а)
люфт проверяют с использованием приспособления, представленного на рис. 27. Проверяемый подшипник внутренним кольцом устанавливают на оправку и зажимают гайкой. Сверху одним концом стержень 4 упирается в поверхность наружного кольца подшипника, а другим - в ножку контрольного миниметра 5. Снизу одним концом стержень 2 упирается в поверхность наружного кольца подшипника, а другим концом связан с системой рычагов. Стержень 4 проходит в трубке 3, а стержень 2 - в головке. Трубка 3 и стержень 2 при помощи рычагов соединены с линейкой 1, по которой передвигается груз Р. Если груз Р находится с правой стороны, трубка 3 давит на наружное кольцо подшипника сверху - кольцо переместится вниз, вследствие чего стержень 4 тоже переместится вниз и на миниметре 5 фиксируют показание стрелки. Если груз Р переместится на левую сторону, то на наружное кольцо подшипника давит стержень 2 - кольцо переместится вверх. Стержень 4 также переместится вверх, при этом снова фиксируют показание миниметра. Разность между показаниями стрелки миниметра и будет радиальным зазором в проверяемом подшипнике.

Планирование ремонтных работ

Техническое обслуживание и ремонт оборудования при систем ППР планируется годовым планом (план-график ППР), который является составной частью техпромфинплана предприятия. Его разрабатывают на год. Ремонт оборудования планируют по месяцам. Планирование ремонтных работ и технического обслуживания оборудования сводится к определению количества и видов ремонта и технического обслуживания, установлению сроков выполнения этих работ определению их трудоемкости, рациональному распределению ремонтных рабочих и дежурного персонала по цехам и участкам, рас­чету необходимых материальных ресурсов и денежных затрат. Это план разрабатывают на основании планируемого количества часов работы машины на год, данных о количестве часов, отработанных машинами на начало года с начала эксплуатации (или после капитального ремонта).

Годовой план ремонта оборудования предприятия разрабатывается в конце каждого года на последующий плановый период отделом главного механика (ОГМ) завода при участии цеховых механиков, со­гласовывается с планово-производственным отделом и утверждается главным инженером предприятия. Элементы плана сначала разраба­тывают по цехам отдельных производств и вспомогательным участ­кам предприятия, а затем составляют сводный план ППР в целом по предприятию.

На основании годового плана технического обслуживания и ре­монта оборудования составляют годовой план-график капитальною ремонта оборудования, который служит основным документом для финансирования капитального ремонта оборудования.

Месячные планы ремонта оборудования по цехам составляются в конце каждого месяца на последующий месяц на основании годо­вого и квартального планов отделом главного механика при участии цеховых механиков. Месячный план проведения ремонта оборудова­ния служит для оперативного руководства и контроля осуществ­ления системы ППР в цехах предприятия (подготовки замены ремонтируемых машин и др.).

План ремонтно-механического цеха и электроцеха на очередной месяц разрабатывается на основании общего плана ППР по ремонту машин и агрегатов, заказов механиков по изготовлению запасных частей и др. Модернизацию некоторых видов оборудования произво­дят по отдельному плану, увязанному с планом ремонта основного оборудования.

В основу составления годового плана положено фактическое со­стояние оборудования, а также ремонтные нормативы, приводимые в действующих инструкциях и положениях по ППР.

Чередование ремонтов, межосмотровых и межремонтных перио­дов для машин различно, что объясняется различными условиями их эксплуатации, а также сроками службы деталей.

Для учета планирования ремонтных работ необходимо знать тру­доемкость их проведения.

Для предварительных подсчетов объема ремонтных работ обору­дование делится на группы (категории) ремонтной сложности, учи­тывающие степень сложности и ремонтные особенности машин. Чем сложнее оборудование, больше его основные размеры и выше тре­буемая точность или качество выпускаемой продукции, тем выше категория сложности его ремонта. Группа ремонтной сложности по­казывает, какое количество условных ремонтных единиц содержится в полной трудоемкости ремонта данной машины.

Количественной характеристикой сложности ремонта г конкрет­ных моделей оборудования служит трудоемкость их капитального ремонта (QH). Связь между категорией сложности ремонта и трудо­емкостью их капитального ремонта определяется" зависимостью

где К к - норма трудоемкости ремонтной единицы при капитальном ремонте.

Нормы трудоемкости условной единицы ремонтной сложности в разных отраслях промышленности строительных материалов прини­мают различные, что объясняется спецификой оборудования и ус­ловиями их работы. Так, в асбестоцементной промышленности в ка­честве эталонного агрегата принята листоформовочная машина СМ-943, ремонтная сложность которой составляет 66 единиц при единице трудозатрат, равной 35 чел-ч. Эта условная единица ремонтосложности механической части отнесена к 4-му или 5-му разряду семиразрядной сетки сдельщика, когда 65% приходится на слесар­ные и прочие работы и 35% на станочные работы.

В промышленности сборного железобетона одна условная едини­ца ремонтосложности по механической части технологического оборудования по затратам на капитальный ремонт принимается равной 50 чел-ч, отнесенная к 4-му разряду тарифной сетки сдель­щика.


Таблица 3

Распределение условной единицы ремонтной сложности механического (А"н), электротехнического (Я"э) оборудования для промышленности сборного железобетона

Группа ремонтной сложности г оборудования заводов промышлен­ных строительных материалов приводится в отраслевых положениях ППР.

Трудоемкость условной единицы ремонтной сложности для обо­рудования сборного железобетона для различных ремонтных работ приводится в табл. 3.

Общая трудоемкость ремонта (чел-ч) какой-либо машины с учетом ремонта ее электрооборудования

Qк = КмЧм+КэЧэ, (40)

где Км и Кэ - трудоемкость условной единицы ремонтной слож­ности механического и электротехнического оборудования, чел-ч; Чм и Чэ - группы ремонтной сложности механического и электротех­нического оборудования.

Таблица 4

Нормы простоя оборудования на одну условную единицу ремонтосложности

Примечание. При работе предприятия по режиму шестидневной рабочей недели с одним выходным дней нормы простоя машины принимаются с коэффициентом 1,15.

Продолжительность простоя машин при ремонте зависит от тру­доемкости ремонта, состава и квалификации ремонтной бригады, тех­нологии ремонта и уровня организационно-технических мероприятий. Норма простоя (сут.) оборудования в ремонте (при 5-дневной рабочей неделе с двумя выходными)

где N - норма простоя для оборудования сборного железобетона, определяемая по табл. 4; r - группа ремонтосложности механиче­ской или электротехнической части оборудования.

Время эксплуатационных испытаний машины после ремонта в об­щий простой не засчитывается, если она работала нормально.

Продолжительность простоя (сут.) оборудования в ремонте можно также определить по формуле

где tи - норма времени на выполнение слесарных работ для машин первой группы ремонтной сложности; r м - группа ремонтосложности машины; М - коэффициент, учитывающий метод выполнения ре­монтных работ (при работе без слесарной подготовки деталей М=1; при предварительной подготовке деталей М =0,75-0,8; при узловом методе ремонта М =0,4-0,5); nс - количество слесарей, работающих в одну смену; tсм - продолжительность смены, ч; С-количество рабочих смен в сутки; Кп - коэффициент, учитывающий перевыпол­нение норм выработки слесарей (К =1,25).

Система ППР оборудования базируется на теории износа деталей машин. Построение структуры ремонтного цикла на машину основано на анализе изменения работоспособности машины в течение всего ремонтного цикла.

Важное условие, определяющее возможность применения плано­во-предупредительной системы, есть кратность и повторяемость тех­нического обслуживания и плановых ремонтов в ремонтном цикле. Это условие в общем виде определяется зависимостью

где N - количество деталей, заменяемых за ремонтный цикл; Тц - время работы машины между двумя наиболее сложными ремонтами (ремонтный цикл); ti - средний срок службы (ресурс) деталей дан­ной группы до замены; ni - количество деталей со средним сроком службы.

Построение рационального графика ремонтного цикла возможно, если величины Тц и tt кратны между собой и равны целому числу:

Pi = Тц/ ti - (44)

Величина Pi называется коэффициентом сменности и показывает, во сколько раз срок службы деталей данной группы меньше срока служ­бы до очередного наиболее сложного ремонта. Эта величина определяет характер мероприятий технического обслуживания и ремонтов, а так­же структуру ремонтного цикла.

Основным показателем системы ППР является длительность меж­ремонтного периода. Он учитывает надежность оборудования и ме­тоды его эксплуатации.

Межремонтный период следует определять по предельной вели­чине кривой износа характерной детали и срока службы (ресурса), используя правила математической статистики.

Для обоснованного построения системы ППР необходимо выбрать оптимальную структуру ремонтного цикла и иметь величину ресур­сов агрегатов для расчета длительности межремонтного периода.

На практике структура ремонтного цикла и интервалы межре­монтных периодов устанавливаются на основании статистических дан­ных по фактическим средним срокам службы деталей машин.

В настоящее время ставится задача устанавливать параметры ре­монтного цикла экономическими расчетами, а при создании повой машины проектировать детали с определенными сроками службы, соответствующими ремонтному графику.

Езда на автомобиле по отечественным дорогам влечет за собой ряд неожиданностей, которые в итоге выливаются в различные неисправности ходовой части и подвески автомобиля. Ходовая часть автомобиля состоит и узлов и деталей, которые обеспечивают хорошую управляемость, безопасность и комфорт во время движения. При нарушении работоспособности хотя бы одной составляющей происходит нарушение в работе ходовой части, что приводит к различным стукам и проблемам с управляемостью автомобиля. Поэтому при выявлении первых признаков неисправностей подвески следует сразу же провести .

Хочется отметить, неисправности ходовой части могут проявляться, как внезапно, к примеру после попадания автомобиля в яму, так и в течение некоторого времени. О скором выходе узла или детали может свидетельствовать характерный стук, который со временем может усиливаться, а также могут появиться проблемы с управлением автомобиля.

Как определить неисправность ходовой части и подвески автомобиля

Если автомобиль во время движения тянет вправо или влево

Нарушен развал схождение колес или шины имеют разную. Также такое поведение автомобиля нередко вызывает неравное . Если после проверки и устранению вышеперечисленных причин, автомобиль все же уходит в сторону, в таком случае ситуация осложняется тем, что проблемой может быть одна из деталей подвески и даже деформация кузова автомобиля. В любом случае для выявления неполадки необходима будет полная диагностика ходовой части.

Возможные неполадки ходовой части или подвески автомобиля

  • Рычаги передней подвески деформированы;
  • Повреждена верхняя опора амортизатора;
  • Жесткость пружин стоек разная;
  • Вышел из строя стабилизатор поперченной устойчивости;
  • Проблемы с тормозным механизмом колес. Колесо полностью не растормаживается;
  • Поврежден или сильно зажат ступичный подшипник;
  • Параллельность переднего и заднего мостов нарушена;

Если автомобиль раскачивает на поворотах и при торможении

  • Неисправны или вышли из строя амортизационные стойки (амортизаторы) или рессоры автомобиля;
  • Изношены втулки стабилизатора поперченной устойчивости;

Вибрация в ходовой части во время движения

  • Неравномерное или пониженное давление в шинах;
  • Изношены или зажаты ступичные подшипники;
  • Шарниры рулевого привода изношены;
  • Ослаблены гайки крепления колес;
  • Отсутствует или неправильная балансировка колес;
  • Поврежден или деформирован диск колеса;

Стуки и шумы подвески во время движения автомобиля

  • Ослабло крепление стоек или штанг стабилизаторов поперечной устойчивости;
  • Не работает, а значит вышел из строя амортизатор;
  • Изношены шаровые опоры и рулевые наконечники;
  • Повреждены или вышли из строя элементы ;
  • Изношены сайлентблоки рычагов;
  • Повреждена или сломана пружина стойки;

Если подвеску пробивает

  • Деформация диска или шины;
  • Недопустимый зазор в ступичном подшипнике;
  • Нерабочий амортизатор, сломана пружина стойки или повреждена рессора;
  • Нарушение геометрии (деформация) рычагов подвески, поворотного кулака и оси рычагов подвески;

Если стучат амортизаторы

  • Износ втулок крепления амортизаторов;
  • Амортизатора потек (признак скорого выхода его из строя);
  • Изношена опора амортизатора;
  • Ослабление крепления амортизатора к подвеске автомобиля;
  • Колеса неравномерно изнашиваются;
  • Не правильная ;
  • Нарушен ;
  • Неправильно работает тормозная система автомобиля;
  • Деформирован рычаг подвески;
  • Нарушена геометрия кузова автомобиля;

Если на поворотах во время торможения появляется скрип

  • Вышли из строя амортизаторы;
  • Разбиты втулки стабилизатора поперченной устойчивости;

И в продолжении материала о ходовой части и подвеске автомобиля смотрите видео

С плохими или неисправными амортизаторами езда на автомобиле становится не только некомфортной, но даже опасной. Машина плохо управляется, ухудшается сцепление колес с дорогой, снижается эффективность действия тормозов. Попробуем разобраться, почему это происходит.

Многие автолюбители путают работу амортизатора с работой других упругих элементов подвески - пружинами. Пружины подвески (чаще всего они бывают витые спиральные или листовые - рессоры, реже встречаются торсионы - закручивающиеся под нагрузкой упругие стержни) смягчают толчки и жесткие удары колес о камни, выбоины или другие неровности дороги.

В результате сила удара, передающегося кузову, уменьшается - удар как бы растягивается во времени. Однако всякие пружины, в том числе и упругие элементы подвески, имеют скверное свойство - закрепленный на них кузов автомобиля может раскачиваться, причем не только на неровностях дороги, но и просто на поворотах. Для того чтобы гасить колебания кузова, возникающие при работе подвески, как раз и нужны амортизаторы. Без них на любые неровности дороги машина будет отвечать долгим раскачиванием и большим креном.

Гидравлические амортизаторы

На все отечественные легковые автомобили устанавливают гидравлические (масляные) амортизаторы. Современный гидравлический амортизатор - это механизм двустороннего действия. Он гасит колебания подвески как при сжатии пружины, так и при ее расслаблении - отдаче. Достигается это за счет сопротивления, которое встречает жидкость, перетекая из одной полости амортизатора в другую. В трубчатом корпусе гидравлического амортизатора располагаются три основные детали: рабочий цилиндр, шток с поршнем и направляющая втулка. Корпус соединяется с элементами подвески, а шток - с кузовом. В днище цилиндра, целиком заполненного жидкостью, и в поршне есть отверстия с клапанами, которые поджимаются пружинами разной жесткости.

При ходе поршня вниз (процесс сжатия) амортизаторная жидкость перетекает через клапаны из нижней полости цилиндра в верхнюю, а при ходе вверх - наоборот. Излишек жидкости, которая вытесняется штоком, попадает через специальное отверстие клапана в компенсационную камеру. Обычно она располагается в зазоре между рабочим цилиндром и корпусом амортизатора и в рабочем состоянии заполнена частично амортизаторной жидкостью, а частично воздухом. Во время отдачи поршень движется вверх вместе со штоком, и недостающее количество жидкости через клапан в днище вновь попадает в цилиндр из компенсационной камеры.

Вязкость амортизаторной жидкости, отверстия клапанов и остальные элементы конструкции рассчитаны так, что, работая синхронно с подвеской, амортизатор оказывает сопротивление ее перемещению при сжатии и расслаблении. Телескопические амортизаторы обычно проектируют с таким расчетом, чтобы усилие перемещения подвески при отдаче было в 2-3 раза больше, чем при сжатии. Именно при таком соотношении усилий колебания гасятся за минимальное время.

Все было бы хорошо, если бы не воздух в компенсационной камере. Когда воздуха мало или нет совсем, а жидкости, соответственно, слишком много, амортизатор перестает работать и ведет себя как жесткое тело. Если же воздуха в камере слишком много, то амортизатор тоже не работает, он "проваливается" (сжимается и разжимается без сопротивления). Другой отрицательный момент: двухтрубная конструкция, чем-то напоминающая двухстенную колбу термоса, ухудшает охлаждение амортизатора, а при гашении колебаний механическая энергия сжатия преобразуется именно в тепловую. Чем хуже условия охлаждения, тем выше температура и ниже вязкость амортизаторной жидкости, а значит, ниже эффективность гашения колебаний. На пологих неровностях дороги и на низких скоростях машина начинает плавно раскачиваться. Это хотя и утомительно, но не очень опасно. На больших скоростях или на мелких неровностях (такое покрытие называют "стиральной доской") колеса могут отскакивать от дорожного полотна, а это уже приводит к серьезным последствиям: падает управляемость, ухудшаются устойчивость и тормозные характеристики автомобиля. Во время очень быстрой езды по неровной дороге возможен даже перегрев амортизатора, а при частых колебаниях подвески жидкость в нем может вспениться. Образованию пены способствует воздух в компенсационной камере. Вязкость пены настолько низка, что амортизатор вообще перестает работать.

Газонаполненные амортизаторы

В последние годы на смену мягко работающим гидравлическим амортизаторам приходят более современные - газонаполненные. Они хотя и более жесткие, но работают стабильно и отличаются большим сроком службы.

Их создание началось с того, что вместо воздуха в компенсационную камеру закачали под небольшим давлением азот и получили так называемый газонаполненный (или газовый) амортизатор низкого давления. Такая конструкция несколько улучшает работу амортизатора, но полностью от вспенивания жидкости не избавляет.

Решение проблемы было найдено, когда компенсационную камеру разделили мембраной, изолировав газ от жидкости, причем газ закачали под высоким давлением - около 25 атмосфер. Поначалу конструкция оставалась двухтрубной со всеми ее минусами, но через некоторое время появились газонаполненные амортизаторы высокого давления, в которых и корпусом и рабочим цилиндром служила одна труба. Этот амортизатор разделен специальным разделительным поршнем на две части: газовую и жидкостную камеры. На штоке укреплен поршень с клапанами, которые работают примерно так же, как и в гидравлическом амортизаторе, но днище в газонаполненном - глухое, без клапанов. Когда шток входит в рабочий цилиндр, объем жидкости в нем изменяется. При ходе сжатия это компенсируется за счет некоторого перемещения разделительного поршня. При ходе отдачи газ, находящийся в газовой камере, выталкивает разделительный поршень на его прежнее место.

Высокое давление в амортизаторе такого типа практически решило проблему вспенивания, поскольку, как известно, чем выше давление в жидкости, тем выше температура ее кипения. К тому же однотрубный амортизатор хорошо охлаждается, поэтому работает более стабильно.

По сравнению с обычными гидравлическими газовые амортизаторы высокого давления отличаются относительно высокой жесткостью, но есть весьма оригинальное техническое решение, позволяющее ее снизить. В средней части рабочего цилиндра делается едва заметное расширение. Поршень на этом участке испытывает несколько меньшее сопротивление, и автомобиль на гладкой или умеренно неровной дороге ведет себя очень мягко. Это так называемая зона комфорта амортизатора. В положениях поршня, близких к краям рабочего цилиндра, его диаметр несколько меньше, и амортизатор работает более жестко. Эти зоны называются зонами контроля.

Есть еще одно преимущество газовых амортизаторов перед гидравлическими. Их можно ставить штоком вниз, вверх, а также наклонно и горизонтально. На работе амортизатора это не сказывается. Гидравлические же амортизаторы ставить "вверх ногами" ни в коем случае нельзя.

Сейчас практически любые амортизаторы есть в продаже. По каталогам их можно подобрать для автомобилей не только импортного, но и отечественного производства. Вот список основных ведущих фирм-производителей:

"Boge" (Германия) производит газовые и гидравлические амортизаторы и поставляет их на автомобильные заводы "BMW", "SAAB", "Volvo";

"Bilstein" (Германия) выпускает в основном амортизаторы для спортивных автомобилей;

"De Carbon" (Франция). Фирма, названная по имени основателя и автора первого газового амортизатора Де Карбона, производит газовые и гидравлические амортизаторы;

"Gabriel" (США) занимает второе место по продаже амортизаторов в Европе в качестве запасных частей, производит гидравлические и газовые амортизаторы;

"Kayaba" (Япония) поставляет свою продукцию на многие японские автосборочные заводы, выпускает амортизаторы и для европейских машин;

"Koni" (Голландия) специализируется на выпуске дорогих амортизаторов высокого класса. Их ставят на автомобили Porsche, Ferrari, Маserati. На Западе фирма дает пожизненную гарантию на свои изделия;

"Monroe" (Бельгия) - лидер в производстве амортизаторов как запасных частей. Выпускает гидравлические и газонаполненные амортизаторы низкого давления. Серийно амортизаторы "Moнро" ставят на автомобили Volvo;

"Sachs" (Германия) поставляет амортизаторы как запасные части, а также на автосборочные заводы. Их устанавливают на серийные автомобили BMW, Audi и другие.

Недавно появились амортизаторы фирмы "Koni" с регулировкой жесткости. В некоторых случаях ее можно производить даже не выходя из машины. А фирма "Sachs" выпустила амортизатор с системой автоматического поддержания дорожного просвета. При движении тяжело нагруженного автомобиля по неровной дороге шток такого амортизатора через датчик положения приводит в действие насос, который "подкачивает" давление в амортизаторе и тем самым приподнимает автомобиль.

Несколько простых советов

Дефекты амортизаторов можно свести к двум основным проблемам - это течи и механические поломки. Чаще всего течи возникают из-за повреждений уплотнений штоков или самих штоков, когда на них попадает грязь, а также из-за низкого качества этих деталей.

Механические поломки возможны во внутренних деталях - клапанах, поршнях, пружинах, но случаются и внешние повреждения (например, обрыв или изгиб штока, образование вмятин на корпусе, обрыв креплений), связанные либо с неправильной установкой амортизатора, либо с аварийными ситуациями.

В поломках амортизаторов бывает виноват сам водитель. Например, трогаясь после длительной стоянки на морозе, нельзя сразу с большой скоростью ехать по неровной дороге. Загустевшая жидкость не может быстро прокачиваться через многочисленные мелкие отверстия амортизатора, он, как говорят автомобилисты, "клинит", и дальше закономерно происходит обрыв штока. На морозе сначала надо проехать около километра потихоньку, чтобы амортизатор, а заодно и трансмиссия успели слегка прогреться.

За амортизаторами нужно внимательно следить. Гидравлические редко выходят из строя сразу. Чаще их характеристики ухудшаются постепенно, и водитель этого даже не замечает. Если гидравлический амортизатор "потек", его лучше заменить на новый. Проверить работу амортизатора несложно. Нужно рукой сильно надавить на крыло сверху вниз и резко снять нагрузку. Если машина поднялась и не остановилась в среднем положении, а тем более, если качнулась еще хотя бы раз, значит, амортизатор под этим крылом неисправен.

Что касается газонаполненных амортизаторов высокого давления, то следует помнить, что с ними подвеска автомобиля становится более жесткой, а машина менее комфортабельной, правда, управляемость и устойчивость существенно улучшаются.

При установке на автомобиль газонаполненного амортизатора кузов несколько приподнимается. Это связано с тем, что из-за высокого давления шток стремится постоянно выдвинуться. Например, у автомобиля "Москвич-2141" после установки передних газонаполненных амортизаторов гродненского производства "передок" приподнимается на 25 мм. Газовые амортизаторы фирмы "Плаза" на "ВАЗ-2108" поднимают кузов примерно на 20 мм. Это несколько уменьшает ход отдачи. Поэтому имеет смысл вместе с амортизаторами поменять и пружины подвески - поставить более мягкие. Однако если пружины на машине старые и "просевшие", то их можно и оставить.

По материалам работ Кандидата технических наук Д. ЗЫКОВА
Дефект: масляный туман на амортизаторе
При каждом ходе шток пошня забирает небольшое количество масла для смазывания сальника.
на сухом штоке амортизатора можно видеть масляный конденсат (масляный туман).
Это не является доказательством неисправности амортизатора. Незначительное запотевание нормально и даже необходимо для обеспечения герметичности амортизатора.
Дефект: амортизатор негерметичен
Уплотнения штока поршня изношены из-за длительного времени работы, большоц нагрузки, песка или уличной грязи - дефект является следствием некорректной эксплуатации.
Дефект: на амортизаторе присутствуют следы антикоррозийной обработки а/м
Нарушает отвод тепла, что в свою очередь стимулирует утечку масла и приводит к уменьшению демпфирующего усилия.
Этот дефект является следствием некорректной эксплуатации (некомпетентности сервисного центра, проводившего антикоррозийную обработку).
Дефект: хромовое покрытие на штоке поршня протерто, видны следы обгорания краски, несимметррично деформирован сальник
Сильное затягивание амортизатора в сборочном положении (при вывешенных колесах).
Несоосные точки зажима (деформация кузова).
Это приводит к износу уплотнения и направляющей штока поршня, из-за этого - утечка масла и потеря производительности.
Амортизатор затягивать до упора только тогда, когда автомобиль стоит на колесах.
Дефект: шток поршня поврежден
Удерживание щипцами штока при монтаже, из-за этого повреждается хромовая поверхность штока поршня.
При работе шток поршня разрывает уплотнение, из-за этого происходит утечка масла и потеря производительности.
Этот дефект является следствием некорректной установки амртизатора. При правильном монтаже, необходимо удерживать шток поршня специальным инструментом.
Дефект: шарниры с упругими резиновыми элементами изношены и со следами ударов
Нормальный износ вследствие длительного использования.
Износ из-за песка (наждачное действие).
Износ из-за езды со слишком высоким дорожным просветом для автомобиля, с неверно отрегулированной установкой элемента пневмотической подвески для дорожного просвета.
Последнее свидетельствует о некорректной установке амортизатора.
Дефект: отпечатки резьбы во втулке
Момент затяжки при установке был недостаточен, что привело к зазору между втулкой и вершинами профиля резьбы.
Дефект: истертые места насадки амортизационной стойки
Момент затяжки при установке был недостаточен.
Использовалось старое резьбовое соединение.
Это приводит к тому, что насадка стучит по амортизационной стойке - дефект является следствием некорректной установки амортизатора.
Дефект: резьбовое соединение оторвано
Крепежная гайка была затянута слишком большим моментом затяжки, что привело к избыточному натяжению материала.
Скорее всего, применялся импульсный винтоверт - дефект является следствием некорректной установки амортизатора.
Дефект: проушина шарнира надорвана или полностью оторвана
Концевой ограничитель хода рессоры поврежден или отсутствует, либо неверно отрегулирован дорожный просвет.
Амортизатор в этом случае выполняет функцию ограничителя, работает "на разрыв",- из-за этого он перегружен.
Этот дефект является следствием некорректной установки амортизатора.

Понравилось? Лайкни нас на Facebook