Характеристики свинцово кислотных аккумуляторов. Применение и эксплуатация кислотно-свинцовых герметичных аккумуляторов. Особенности применения гелевых автомобильных аккумуляторов

С.Н. Костиков

Анализ причин отказов герметизированных свинцово-кислотных аккумуляторов

Около сорока лет назад удалось создать герметизированный свинцово-кислотный аккумулятор. Все реализованные до настоящего времени герметизированные свинцово-кислотные аккумуляторы снабжены клапаном, который должен открываться для выброса избыточного газа, в основном водорода, при заряде и хранении. Полной рекомбинации кислорода и водорода достичь невозможно. Поэтому аккумулятор называется не герметичным, а герметизированным. Важным условием хорошей герметизации является плотное химическое и термостойкое соединение конструктивных элементов. Особое значение имеет технология изготовления пластин, конструкция клапана и герметизация выводов. В герметизированных аккумуляторах используется «связанный» электролит. Рекомбинация газов идет по кислородному циклу.

Для связывания электролита существует два способа:

Использование гелеобразного электролита (технология GEL);

Использование стекловолокна, пропитанного жидким электролитом (технология AGM).

Каждый способ имеет свои достоинства и недостатки.

Под надежностью аккумулятора понимают его способность сохранять оговоренные изготовителем характеристики при эксплуатации в течение заданного времени в заданных условиях. За критерий отказа аккумулятора принимается несоответствие его параметров установленным нормам. Требования к герметизированным свинцово-кислотным аккумуляторам и методы их испытаний изложены в стандартах ГОСТ Р МЭК 60896-2-99 (IEC 896-2, DIN EN 60896 Teil 2). Существует ряд факторов, которые ограничивают достижение высокой степени надежности герметизированных свинцово-кислотных аккумуляторов любой технологии:

Сильное влияние незначительных примесей на свойства активных масс пластин;

Большое количество технологических процессов при производстве аккумуляторов;

Использование широкого ассортимента материалов и комплектующих для изготовления аккумуляторов, которые могут производиться на разных заводах (в разных странах, где не всегда обеспечивается должный входной контроль и унификация изделий).

Повышение надежности связано, в первую очередь, с тщательным входным контролем всего поступающего сырья, используемых материалов и комплектующих. Необходим строгий контроль технологии изготовления на всех этапах производства. Чтобы достичь точности технологических операций, производство должно иметь высокую степень автоматизации и единый технологический цикл (полный цикл производства).

Обычная (классическая с жидким электролитом) конструкция аккумуляторов обеспечивает их высокую надежность за счет избыточности активной массы электродов, электролита и токоведущих элементов. В них избыток реагентов и электролита составляет 75–85% от теоретически необходимых. Герметизированные аккумуляторы имеют меньшую надежность, чем классические свинцово-кислотные аккумуляторы. Аккумуляторы технологии AGM имеют малый запас электролита. В аккумуляторах технологии GEL используется сложный многокомпонентный состав электролита, а также трудно добиться равномерного распределения геля внутри аккумулятора. Появляются новые конструктивные элементы (герметизированный корпус с крышкой, специальный газовый клапан с фильтром, специальное уплотнение токовыводов, специальные добавки в электролит, специальные сепараторы и др.). Поляризация положительного электрода в герметизированных аккумуляторах больше, чем в классических, и может достигать 50 мВ. Это приводит к ускорению коррозионных процессов, особенно в буферном режиме эксплуатации.

КОНСТРУКЦИЯ ГЕРМЕТИЗИРОВАННЫХ АККУМУЛЯТОРОВ

В герметизированных свинцово-кислотных аккумуляторах применяются пастированные электроды. Они могут быть решетчатыми и панцирными. Панцирные электроды применяются в GEL аккумуляторах типа OPzV в качестве положительных пластин, а в остальных типах для положительных электродов применяются решетчатые пластины. Применение различных типов положительных пластин отражается на электрических характеристиках аккумуляторов. Это связано с внутренним сопротивлением аккумулятора. Положительные панцирные пластины состоят из штырей, которые помещаются внутри перфорированных трубок, заполненных активированной массой (см. рис. 1). Использование панцирных пластин позволяет изготавливать герметизированные аккумуляторы (технологии GEL) большой емкости, такой же как у классических аккумуляторов. В герметизированных аккумуляторах технологии AGM (см. рис. 2) как малой, так и большой емкости используются решетчатые пластины, что удешевляет их стоимость и упрощает конструкцию.

В производстве аккумуляторов используется как чистый свинец, так и его сплавы. Сурьма, которая неоднозначно воздействует на эксплуатационные характеристики аккумуляторов, для производства пластин герметизированных аккумуляторов не применяется.

В герметизированных свинцово-кислотных аккумуляторах используются сплавы свинца с кальцием или с оловом и сплав свинца, кальция, олова, могут быть добавки алюминия. Здесь электролиз воды начинается при более высоких напряжениях. Кристаллы, образующиеся в пластинах, мелкие и однородные, а их рост ограничен. Осыпание активной массы и внутреннее сопротивление аккумулятора при использовании кальциевых решеток несколько больше, чем в случае свинцово-сурьмяных. Разрушение пластин преимущественно происходит при заряде аккумулятора. Для уменьшения осыпания в активную массу вводят волокнистые материалы, например фторопласт, и используют стекловолокно, прижатое к пластинам (технология AGM) или пористые сепараторы (сумки, конверты, удерживающие активную массу) из мипласта, PVC, стекловолокна (технология GEL); могут использоваться двойные сепараторы. Двойные сепараторы увеличивают внутреннее сопротивление, но повышают надежность аккумуляторов. Не все производители герметизированных аккумуляторов применяют двойные сепараторы. В некоторых моделях аккумуляторов встречаются многослойные сепараторы, дефекты в одном из слоев защищены другим, и рост дендритов затруднен при переходе от слоя к слою.

Надежность герметизированных аккумуляторов также зависит и от материала корпуса, качества и конструкции токовыводов, конструкции газового клапана. Некоторые производители для минимизации затрат делают корпус с толщиной стенки 2,5–3 мм, что не всегда обеспечивает высокую надежность. Для более высокой надежности толщина стенки должна быть 6 мм и более. Некоторые увеличивают пористость электродов, что не всегда положительно сказывается на надежности аккумуляторов. В погоне за увеличением прибыли многие фирмы заведомо завышают параметры аккумуляторов и искажают реальный срок службы, делают гибриды, в аккумуляторы AGM-технологии заливают гелевый электролит и др.

Рис. 1. Конструкция электродов свинцово-кислотного аккумулятора технологии GEL с панцирными пластинами (типа OPzV)

Рис. 2. Конструкция герметизированного свинцово-кислотного аккумулятора AGM-технологии

ВИДЫ ОТКАЗОВ ГЕРМЕТИЗИРОВАННЫХ АККУМУЛЯТОРОВ

Известно, что ухудшение электрических характеристик герметизированных аккумуляторов и выход из строя (отказ) при эксплуатации обусловлены коррозией основы (решетки) и оползанием активной массы положительного электрода, которые иногда называют деградацией положительного электрода. Деградация положительного электрода в классических аккумуляторах с жидким электролитом имеет плавную зависимость от срока службы, и ее можно проследить за период эксплуатации. В герметизированных аккумуляторах деградация положительных пластин более резкая и до конца не изученная, корпуса аккумуляторов непрозрачные, что затрудняет визуальный контроль уровня электролита и состояния пластин. Плотность электролита измерить нельзя.

Коррозия решеток положительных пластин – наиболее частый дефект герметизированных аккумуляторов, эксплуатируемых в буферном режиме. На скорость коррозии решеток влияет много факторов: состав сплава, конструкция самой решетки, качество технологии отливки решетки на заводе, температура, при которой работает аккумулятор. В качественно отлитых решетках из сплава Pb-Ca-Sn скорость коррозии мала. А в плохо отлитых решетках скорость коррозии высокая, отдельные участки решетки подвергаются глубокой коррозии, что вызывает локальный рост решетки и ее деформацию. Локальные наросты приводят к короткому замыканию при контакте с отрицательным электродом. Коррозия положительных решеток может приводить к потере контакта с нанесенной на нее активной массой, а также с соседними положительными электродами, которые соединяются друг с другом с помощью мостов или бареток. В герметизированных аккумуляторах пространство под пластинами для скопления шлама либо очень мало, либо вовсе отсутствует – пластины имеют плотную упаковку, поэтому вызванное коррозией оползание активной массы может привести к короткому замыканию пластин. Короткое замыкание пластин – самый опасный дефект в герметизированных аккумуляторах. Замыкание пластин в одном герметизированном аккумуляторе, если это не заметит персонал выведет из строя все остальные. Время, в течение которого аккумуляторы выйдут из строя исчисляется периодом от нескольких часов до получаса.

При эксплуатации аккумуляторов в буферном режиме из-за малых токов подзаряда может наблюдаться дефект – пассивация отрицательного электрода . В герметизированных аккумуляторах любой технологии отрицательные электроды изготавливаются из решетчатых пластин. Механизмы процессов, протекающих на электродах, сложны и окончательно не установлены. Считают, что при работе аккумулятора на отрицательном электроде преимущественно идут жидкофазные процессы (растворение-осаждение), и ограничение его разряда связано с образованием пассивирующего слоя. Признаком пассивации отрицательного электрода обычно бывает снижение напряжения разомкнутой цепи (НРЦ) на заряженном аккумуляторе ниже 2,10 В/эл. Проведение дополнительных уравнительных зарядов (например, в аккумуляторах типа OPzV) может восстановить напряжение, но аккумуляторы после этого должны быть постоянно на контроле, так как это может опять повториться. Для снижения пассивации отрицательного электрода некоторые производители вводят в него специальные добавки, которые работают как расширители активной массы отрицательного электрода и препятствуют ее усадке.

Если герметизированные аккумуляторы работают в режиме циклирования (при частых отключениях электроэнергии или в циклическом режиме), то чаще возникают дефекты, связанные с деградацией активной массы положительного электрода (ее разрыхление и сульфатация), которые приводят к снижению емкости при контрольном разряде. Проведение тренировочных зарядов для разрушения сульфата, как советуют в своих инструкциях по эксплуатации некоторые производители, ничего не дает, а даже приводит к еще более быстрому снижению емкости. Разрыхление приводит к потере контакта между частицами двуокиси свинца, они становятся электрически изолированными. Большие разрядные токи ускоряют процесс разрыхления. Наличие и степень сульфатации активной массы можно проконтролировать, поскольку она сопровождается изменением плотности электролита, которое в AGM аккумуляторах может быть грубо оценено по измерению НРЦ аккумулятора после окончания заряда. НРЦ заряженного герметизированного аккумулятора равно 2,10–2,15 В/эл в зависимости от плотности электролита, в аккумуляторах технологии AGM плотность электролита равна 1,29–1,34 кг/л, в гелевых аккумуляторах плотность ниже и имеет значения 1,24–1,26 кг/л (из-за высокой плотности электролита аккумуляторы технологии AGM могут работать при более низких температурах, чем гелевые). При разряде, по мере разбавления электролита, НРЦ герметизированного аккумулятора уменьшается и после разряда становится равным 2,01–2,02 В/эл. Если НРЦ разряженного герметизированного аккумулятора меньше 2,01 В/эл, то аккумулятор имеет высокую степень сульфатации активной массы, которая может быть уже необратимой.

При недозаряде герметизированных аккумуляторов при эксплуатации (например, из-за неверно установленного напряжения постоянного подзаряда, неисправности ЭПУ, отсутствии термокомпенсации) на отрицательном электроде, происходит сульфатация, постепенный переход мелкокристаллического сульфата свинца в плотный твердый слой сульфата с крупными кристаллами. Образующийся при этом плохо растворимый в воде сульфат свинца ограничивает емкость аккумулятора и способствует выделению водорода при заряде.

Если на положительном электроде аккумулятора наблюдается толстый окисел коричневого цвета, то это признак коррозии решетки. Возможные причины коррозии:

Аккумуляторы перед эксплуатацией долго лежали на складе без подзаряда;

При эксплуатации подавался переменный ток (~I ), проблемы с зарядным устройством (выпрямителем, ЭПУ).

В герметизированных аккумуляторах могут проявляться и специфические коррозионные процессы на мостах (чаще на отрицательных) и на борне. Поскольку продукты коррозии имеют больший объем, чем свинец, может выдавливаться компаунд, герметизирующий вывод, повреждено резиновое уплотнение борна, крышка и даже корпус аккумулятора. Дефекты такого рода часто наблюдаются в аккумуляторах, если не было строгого соблюдения технологического процесса при их изготовлении (например, большой разрыв по времени между технологическими операциями).

РАБОЧЕЕ ПОЛОЖЕНИЕ ГЕРМЕТИЗИРОВАННЫХ АККУМУЛЯТОРОВ

Многие производители герметизированных аккумуляторов в своих инструкциях по эксплуатации указывают на возможную эксплуатацию аккумуляторов в любом положении.

В процессе эксплуатации герметизированных аккумуляторов из-за неизбежных потерь воды при открывании газового клапана происходит некоторое высыхание электролита, при этом увеличивается внутреннее сопротивление и снижается напряжение, как при пассивации отрицательного электрода.

В герметизированных аккумуляторах технологии AGM кроме высыхания электролита может происходить расслоение электролита: серная кислота, которая находится в жидком виде, стекает вниз из-за более высокого удельного веса по сравнению с водой, в результате чего возникает концентрационный градиент в верхней и нижней части аккумулятора, что ухудшает разрядные характеристики и увеличивает температуру аккумулятора. Этот эффект в аккумуляторах малой и средней емкости наблюдается редко, а использование мелкопористого стекловолоконного сепаратора с высокой степенью сжатия всего пакета положительных и отрицательных пластин уменьшает его. Высокие герметизированные AGM-аккумуляторы большой емкости лучше эксплуатировать «лежа» на боку, но использовать лишь ту сторону, при которой пластины будут находиться перпендикулярно земле (необходимо узнать у производителя). Китайские и японские производители изготавливают герметизированные аккумуляторы большой емкости низкой высоты призматической формы, что позволяет их эксплуатировать вертикально, так же как аккумуляторы типа OPzV.

В герметизированных аккумуляторах технологии GEL, особенно в OPzV, при эксплуатации «лежа» на боку могут возникать дефекты, связанные с протечкой гелевого электролита. В процессе работы газового клапана из-за силикагеля и других компонентов гелевого электролита забиваются гидрофобные пористые фильтры (круглые пластины), которые должны пропускать газ, но не пропускать электролит. После того как клапан перестает пропускать газ, внутреннее давление может возрасти до 50 кПа и более. Газ находит слабое конструктивное место: это может быть герметизирующее уплотнение клапана или борна, место в корпусе, особенно возле ребер жесткости (у некоторых производителей), место крепления крышки к корпусу аккумулятора, что приводит к аварийному разрыву, сопровождающемуся выбросом электролита наружу; электролит проводит электрический ток – может возникнуть короткое замыкание. Были случаи, когда протечка электролита, вовремя не обнаруженная персоналом, приводила к возгоранию изоляционных колпачков. Электролит может «проесть» пол и т.д. (см. Фото 1).


Фото 1. Последствия от протечки электролита из лопнувшего корпуса OPzV

Гелевые аккумуляторы лучше всего располагать вертикально, чтобы аэрозоли веществ, составляющих гелевый электролит, не могли попасть в фильтр газового клапана. Некоторые производители гелевых 2В аккумуляторов удлиняют корпус аккумулятора, разрабатывают различные улавливатели аэрозолей, делают сложную лабиринтную конструкцию клапана, чтобы эксплуатировать гелевые аккумуляторы «лежа» на боку.

Надежней эксплуатировать гелевые аккумуляторы типа OPzV в вертикальном положении!

ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ БАТАРЕЙ

Для увеличения емкости и надежности системы электропитания можно осуществлять параллельное подключение батарей. Европейские производители не рекомендуют устанавливать в параллель более четырех групп. Азиатские производители рекомендуют использовать параллельное подключение не более двух групп. Это связано с однородностью элементов аккумуляторной батареи, которая связана с технологией изготовления и качеством производства. Однородность элементов у европейских производителей лучше. Рекомендуется, чтобы батареи в аккумуляторных группах были одного типа и одного года выпуска. Не допускается производить замену одного элемента в группе элементом другого типа или устанавливать параллельно группы из аккумуляторов различных типов.

СРОК СЛУЖБЫ ГЕРМЕТИЗИРОВАННЫХ АККУМУЛЯТОРОВ

По классификации Европейской ассоциации производителей аккумуляторов (Евробат) аккумуляторы подразделяются на четыре основные группы (могут быть подгруппы):

10 лет и более (специальное назначение ) – телекоммуникации и связь, атомные и обычные электростанции, нефтехимическая и газовая промышленность и др.;

10 лет (улучшенные характеристики ) – в основном эта группа батарей соответствует предыдущей группе (специальное назначение), но требования по техническим характеристикам и надежности не столь высоки;

5–8 лет (универсальное применение ) – технические характеристики этой группы такие же, как и для группы «улучшенные характеристики», но требования к надежности и испытаниям ниже;

3–5 лет (широкое применение ) – эта группа батарей находит применение в установках, приближенных к бытовому потребителю, популярна в UPS, чрезвычайно популярна в нестационарных условиях.

Окончанием срока службы считается наступление момента времени, когда отдаваемая емкость составляет 80% от номинальной.

Срок службы герметизированных аккумуляторов зависит от многих факторов, но наибольшее влияние оказывают режим заряда и температура эксплуатации аккумуляторов. Для постоянной готовности к работе в электропитающих установках (ЭПУ) аккумуляторы должны находиться под напряжением постоянного подзаряда (буферный режим). Напряжение постоянного подзаряда – напряжение, непрерывно поддерживаемое на выводах аккумулятора, при котором протекание тока компенсирует процесс саморазряда аккумулятора. Необходимо учитывать, что ток постоянного подзаряда аккумулятора зависит от напряжения постоянного подзаряда и температуры аккумулятора. Оба параметра изменяют силу тока постоянного подзаряда аккумулятора и тем самым влияют на расход воды, в герметизированных аккумуляторах добавить воду нельзя. Для обеспечения максимального срока службы герметизированных аккумуляторов важно поддержание оптимального напряжения постоянного подзаряда и оптимальной температуры в помещении.

При увеличении температуры аккумулятора на каждые 10°С все химические процессы, включая и коррозию решеток, ускоряются. Следует помнить, что при заряде герметизированных аккумуляторов их температура может быть выше температуры окружающей среды на 10–15°С. Это связано с разогревом аккумуляторов из-за процесса рекомбинации кислорода и герметичной конструкцией. Разница температур особенно заметна при ускоренных режимах заряда и в случае расположения батареи внутри стойки ЭПУ. Эксплуатация аккумуляторов при температуре выше +20°С ведет к уменьшению срока службы. В приведенной ниже табл. показана зависимость срока службы от температуры. Необходимо вводить корректировку напряжения постоянного подзаряда от температуры. Компенсация влияния повышенной температуры за счет регулирования напряжения постоянного подзаряда может смягчить этот эффект и улучшить приведенные в табл. цифры, но не более чем на 20%.

Необходимо размещать герметизированные батареи так, чтобы обеспечивалась вентиляция помещения и охлаждение аккумуляторов. С этой точки зрения, более предпочтительно размещение аккумуляторов так, чтобы клапаны размещались фронтально. В настоящее время производители предлагают аккумуляторы с фронтальными выводами, так называемые фронттерминальные (клеммы-выводы расположены спереди), но клапаны у этих аккумуляторов расположены сверху, как и у обычных аккумуляторов. Опыт эксплуатации фронттерминальных аккумуляторов в разных странах показывает их меньшую надежность в сравнении с обычными аккумуляторами. Фронттерминальные AGM-аккумуляторы наиболее склонны к явлению термического самопроизвольного разогрева - терморазгону. Применение данных аккумуляторов обязательно должно осуществляться после расчета и исследования тепловых полей в отсеках ЭПУ, стойках и шкафах.

У герметизированных аккумуляторов при заряде выделяется небольшое количество водорода. Нужен небольшой (естественный) обдув батареи. При длительной работе батареи с аккумуляторами большой емкости следует помнить о необходимости вентиляции помещений из-за возможности накопления водорода и соблюдения температурного режима. Раньше считалось, что для герметизированных батарей большой емкости не требуется вентиляция, как для батарей малой и средней емкости. Но с учетом опыта монтажа и сервиса импортных герметизированных батарей мы рекомендуем устанавливать оборудование для вентиляции и кондиционирования аккумуляторных помещений.

Герметизированные аккумуляторы выделяют больше тепла при заряде и сильней сами нагреваются, чем классические аккумуляторы (например, типа OPzS):

Qm = 0,77 ∙ N I h , (1)

где Qm – Джоулевый нагрев, Вт ∙ ч;

0,77 – псевдополяризация, В при 2,25 В/эл;

N – число 2 В элементов;

I – ток заряда, А;

h – время продолжительности заряда, ч.

Аккумуляторы классические (OPzS): Qm = 0,04 Вт/100 А∙ч эл/ч. Происходит Джоулевый нагрев – испарение газа (с газом выходит тепло).

Герметизированные аккумуляторы: Qm = 0,10 Вт/100 А∙ч эл/ч. Происходит Джоулевый нагрев + рекомбинация газа.

Емкость, %

Рис. 3. Влияние глубины разряда. Данные для аккумуляторов AGM-технологии. Аккумуляторы технологии GEL – более стойкие к глубокому разряду

Для герметизированных аккумуляторов AGM-технологии (см. рис. 3) вредны частые разряды-заряды, лучшую цикличность имеют аккумуляторы с гелевым электролитом. Но GEL-аккумуляторы больше выделяют водорода при заряде, чем AGM-аккумуляторы. У гелевых аккумуляторов при низких температурах раньше, чем у AGM-аккумуляторов, замерзает электролит, и могут возникать разрывы корпуса, так как электролит занимает весь объем банки.

Герметизированные аккумуляторы обоих технологий очень чувствительны к перезаряду. На рис. 4 показано, как быстро снижается срок службы при работе в буферном режиме при увеличении напряжения постоянного подзаряда. Недозаряд аккумуляторов также вреден.

Рис. 4. Зависимость срока службы от напряжения постоянного подзаряда

Для обеспечения длительного срока службы герметизированного аккумулятора в буферном режиме необходимо, чтобы установившееся отклонение выходного напряжения постоянного тока ЭПУ не превышало 1%. Переменная составляющая выходного напряжения постоянного подзаряда вредна для герметизированных аккумуляторов. Максимальное критическое значение ~I (АС) = 2 – 5 А (rms) на 100 А∙ч. Всплески (пики) и другие виды пульсирующего напряжения (при отключенной батареи, но с присоединенной нагрузкой) считаются допустимыми, если разброс пульсаций напряжения ЭПУ, включая пределы регулирования, не превышает 2,5% рекомендованного напряжения постоянного подзаряда батареи. Большие пульсации переменного тока могут привести к термическому разогреву (терморазгону) аккумуляторов. AGM-аккумуляторы более склонны к терморазгону, чем гелевые аккумуляторы. При использовании герметизированных аккумуляторов в инверторах критичной считается частота менее 50 Гц (46–35 Гц). Обычно это происходит из-за неисправности инвертора. Например, частота 20 Гц может привести к большому перезаряду аккумулятора и выходу его из строя в течение нескольких дней. Особенно чувствительны к таким неисправностям AGM-аккумуляторы. При частотах ниже 20 Гц в аккумуляторах вообще может остановиться электрохимическая реакция.

Для длительного срока службы герметизированных аккумуляторов важны: толщина положительной пластины (4–5 мм), состав сплава и конструкция решетки. Некоторые производители заявляют большой срок службы аккумуляторов, при этом используют стандартные (тонкие 2,5–3 мм) пластины; реальный срок службы таких аккумуляторов остается неизвестным и может быть определен только в процессе эксплуатации. При выборе аккумуляторов рекомендуем обратить внимание на вес, который связан с толщиной пластин.

В GEL-аккумуляторах типа OPzV с панцирными пластинами срок службы во многом зависит от скорости коррозии стержня электрода. Толщина пластин большая и равна 8–10 мм, что обуславливает большой срок их службы и низкую скорость коррозии стержня.

Статистику причин отказов герметизированных аккумуляторов в России проследить очень трудно. Фирмы-поставщики аккумуляторов тщательно это скрывают, чтобы не потерять авторитет и рынок сбыта. Много отказов происходит из-за нарушений условий эксплуатации, а также устаревшей техники. Среди них следует отметить негативное влияние выпрямителей типа ВУК на срок службы аккумуляторных батарей. Технический ресурс использования этих выпрямителей превысил все мыслимые пределы. Выпрямители типа ВУК не имеют ни стабильного, ни фильтрованного напряжения на выходе. Можно обратить внимание на выпрямители устаревшего типа ВУТ: неправильное чередование фаз питающей промышленной сети приводит к отказу выпрямителей. Этот отказ является восстанавливаемым и проявляется в недопустимом завышении выходного напряжения с последующим аварийным отключением выпрямителя. В случае совпадения неправильного чередования фаз с отказом завышенное напряжение питания вызывает повреждение батареи (сильный перезаряд), которую восстановить уже нельзя. В ВУТах отсутствует устройство автоматического переключения из режима стабилизации тока в режим стабилизации напряжения. Герметизированные аккумуляторы с устройствами старого типа (ВУТ, ВУК) работают недолго, и использование их с данными выпрямителями недопустимо.

При выборе аккумулятора для стационарных условий работы следует руководствоваться, в первую очередь, условиями эксплуатации. Если есть аккумуляторное помещение, оборудованное приточно-вытяжной вентиляцией для размещения обслуживаемых классических аккумуляторов, то его следует использовать по назначению и только для классических аккумуляторов с жидким электролитом (например, типа OPzS (в России – типа ССАП, ТБ-М), OGi (типа СН, ТБ), Groe (типа СК, БП). Герметизированные аккумуляторы лучше применять при наличии хорошего современного выпрямителя (например, УЭПС-3 производства ОАО «ЮПЗ «Промсвязь»). Герметизированные аккумуляторы только на первый взгляд доставляют меньше хлопот своим хозяевам. Их применение не означает, что обслуживание вообще исключается. В любом случае необходимо контролировать состояние аккумуляторов (напряжение, емкость, состояние корпуса и выводов, температуру аккумуляторов и помещения). Для успешной эксплуатации герметизированных аккумуляторов важно, чтобы в выпрямителях (ЭПУ), используемых для заряда аккумуляторов, были реализованы все требования, которые предъявляются к заряду герметизированных свинцово-кислотных аккумуляторов.

Для того чтобы поднять надежность ЭПУ с герметизированными аккумуляторами, необходимо чаще получать оперативную информацию о состоянии и режимах работы системы электропитания. Это возможно за счет использования систем сигнализации и мониторинга электропитания. Для этих целей можно применять устройство контроля разряда-заряда (УКРЗ) аккумуляторных батарей. УКРЗ может автоматически выполнять тесты проверки аккумуляторов, автоматически контролировать параметры. По результатам тестов можно прогнозировать сроки замены и планировать техническое обслуживание. Современные ЭПУ типа УЭПС-3 могут комплектоваться устройствами поэлементного контроля батарей УПКБ, которые позволяют дистанционно контролировать напряжение и температуру каждого 2В элемента или моноблока и передавать через Ethernet, GSM, PSTN, RS-485 (тип модуля определяется при заказе). Можно использовать устройство контроля напряжения буферного режима аккумуляторной батареи (УКН) с дистанционной сигнализацией для оповещения дежурного персонала. Операторы мобильной связи рекомендуют строить систему мониторинга на базе радиосети и современных универсальных микроконтроллеров, снабженных радиомодемами, которые регулярно отправляют информацию в центр и на мобильные телефоны технического персонала. Кроме того, системы мониторинга послужат основой для интеграции с АСКУЭ и системой управления климатом, которые активно внедряются на объектах связи, энергетики, транспорта и промышленных предприятиях.

Несмотря на то, что свинцовый аккумулятор известен более ста лет, продолжаются работы по его совершенствованию. Совершенствование свинцовых аккумуляторов идет по пути изыскания новых сплавов для решеток, облегченных и прочных материалов корпусов и улучшения качества сепараторов.

Для герметизированных свинцово-кислотных аккумуляторов характерен большой разброс параметров, связанных с технологией изготовления, качеством исходного сырья и техническим уровнем оборудования, применяемого для изготовления аккумуляторов.

«…Не смотря на сложность систем электропитания (ЭПУ), современные технологии выпрямления переменного тока и инвертирования постоянного тока, аккумулятор является самой главной и самой ответственной частью этих систем электропитания…», – из статьи М.Н. Петрова.

Основная задача, которую необходимо решить в ближайшее время это - создать производство герметизированных свинцово-кислотных аккумуляторов в России!

При создании производства надо учесть накопленный опыт в других странах и в самой России.

1). Следить за уровнем электролита в аккумуляторах и степенью разряженности АБ. Степень разряженности АБ может быть проверена по напряжению, или более точно по плотности электролита. Для этого применяется аккумуляторный пробник и кислотомер (ареометр). Уровень электролита замеряется с помощью стеклянной трубочки. Он должен быть выше предохранительного щитка для АБ типа САМ на 6-8 мм.

2). Перед каждым полетом проверять степень заряженности АБ по бортовому вольтметру. Для этого при выключенных потребителях и при отключенном источнике наземного питания включается аккумулятор и на 3-5 сек. нагрузка 50-100 А, напряжение должно быть не менее 24 В. Батареи, разряженные более чем на 25%, отправляются не позднее 8 часов после полета на зарядную станцию для подзарядки.

3). Батареи содержать в чистоте, не допускать механических повреждений и прямого воздействия солнечных лучей. Металлические детали батарей очищать от окислов и смазывать тонким слоем технического вазелина.

4). При температуре окружающего воздуха ниже -15 батареи снимать ЛА и хранить в специальных помещениях.

5). Систематически, каждый месяц проводить глубокие заряды батарей во избежание их сульфатации. Один раз в три месяца проводить КТЦ для предупреждения сульфатации и определения фактической емкости АБ. Батареи, имеющие емкость менее 75% от номинальной, к дальнейшей эксплуатации непригодны.

6). На ЛА устанавливать только заряженные АБ.

Занятие №3. "Эксплуатация серебрянно-цинковых аб".

1. Типы, принцип работы и основные ттд серебрянно-цинковых аб.

2. Виды зарядов серебрянно-цинковых аккумуляторов и правила их эксплуатации.

3. Правила эксплуатации серебрянно-цинковых АБ.

4. Интегрирующий счетчик ампер-часов типа "ИСА".

1. Типы, принцип работы и основные ттд серебрянно-цинковых аб.

В настоящее время находят применение батареи типа 15-СЦС-45Б (на МиГ-23 установлены две батареи).

- "15" - количество аккумуляторов в батарее, соединенных последовательно;

- "СЦС" - серебрянно-цинковая стартерная;

- "45" - емкость в ампер-часах;

- "Б" - конструктивное исполнение (модификация).

Принцип действия основан необратимых электрохимических реакциях, протекающих в две ступени:

1). 2AgO + KOH +Zn  Ag 2 + KOH +ZnO

 AgO = 0,62 В;  Zn = -1,24 В; Eак = 0,62 + 1,24 = 1,86 В.

c2). Ag 2 O + KOH +Zn  2Ag + KOH +ZnO

 AgO = 0,31 В;  Zn = -1,24 В; Eак = 0,31 + 1,24 = 1,55 В.

ТТД и характеристики АБ 15-СЦС-45Б:

Вес с электролитом не более 17 кг;

Высотность до 25 км;

Номинальное напряжение не менее 21 В;

Минимально допустимое напряжение разряда аккумулятора от 0,6 до 1,0 В;

Номинальный ток разряда 9 А;

Максимальный ток разряда не более 750 А;

Номинальная емкость 40-45 ампер-часов;

Срок службы 12 месяцев; из них первые 6 месяцев с отдачей емкости не менее 45 АЧ,а вторые 6 месяцев - не менее 40АЧ; за этот срок обеспечивается 180 автономных запусков при расходе на каждый около 5 АЧ;

Внутреннее сопротивление не более 0,001 Ом;

Саморазряд при температуре 20 гр.Цельсия не более 10-15% в месяц.

Тяговые свинцово-кислотные аккумуляторные батареи (АКБ) с трубчатыми положительными пластинами предназначены для обеспечения непрерывной работы транспортных средств на электротяге – электропогрузчиков, штабелеров, тележек, поломоечных машин, а также шахтных тягачей, электровозов, трамваев и троллейбусов.

Основные параметры аккумуляторов

Основными параметрами АКБ являются номинальное напряжение, номинальная емкость, габаритные размеры и срок службы.

Номинальное напряжение одного аккумуляторного элемента составляет 2 В, соответственно общее номинальное напряжение АКБ, состоящей из соединенных последовательно N аккумуляторов, равно сумме напряжений каждого из них. Например, напряжение батареи, состоящей из 24 элементов, 48 В. Нормальное значение напряжения при правильной эксплуатации может варьироваться в процессе работы от 1,86 до 2,65 В/элемент для батарей с жидким электролитом и от 1,93 до 2,65 В/элемент для гелевых батарей.

Историческая справка

Идея загустить электролит батареи до состояния геля появилась у доктора Якоби, разработчика компании Sonnenschein, в 1957 г. В том же году была запатентована технология dryfit и начато производство гелевых батарей. Интересно, что первые их аналоги начали появляться на рынке только в середине 1980-х, в это время Sonnenschein имела уже почти 30-летний опыт производства таких батарей.

Электрической емкостью АКБ называется количество электричества, снимаемое при разряде АКБ. Емкость может измеряться в разных режимах, например, при 5-часовом разряде (С 5) и 20-часовом разряде (С 20). При этом у одной и той же батареи получится разное значение емкости. Так, при емкости батареи С 5 = 200 А·ч емкость С 20 той же самой батареи будет равна 240 А·ч. Этим иногда пользуются для завышения емкости батареи. Как правило, емкость тяговых аккумуляторов измеряют в 5-часовом режиме разряда, стационарных – в 10-часовом или 20-часовом, стартерных – только в 5-часовом режиме. Кроме того, при снижении температуры батареи ее полезная емкость уменьшается.

Габаритные размеры, как правило, имеют определяющее значение, поскольку в любой технике на электротяге для аккумулятора предусмотрено специальное посадочное место. Точный размер ящика зачастую можно узнать по модели машины.

Срок службы АКБ (для ведущих западноевропейских производителей) определяется DIN/EN 60254-1, IEC 254-1 и составляет 1500 циклов для батарей с жидким электролитом и 1200 циклов для гелевых батарей. Однако реальный срок службы может сильно отличаться от этих цифр, причем, как правило, в меньшую сторону. Он зависит прежде всего от качества производства и используемых материалов, от правильности эксплуатации и своевременности обслуживания, от режима работы, а также типа используемого зарядного устройства.


Эксплуатация

Условно процедуры эксплуатации и обслуживания можно разделить на четыре группы – ежедневные, еженедельные, ежемесячные и ежегодные операции.

Ежедневные операции:

  • зарядить батарею после разряда;
  • проверить уровень электролита и при необходимости откорректировать его, долив дистиллированную воду.

Еженедельные операции:

  • очистить батарею от загрязнений;
  • провести визуальный осмотр;
  • провести выравнивающий заряд (желательно).

Ежемесячные операции:

  • проверить исправность зарядного устройства;
  • проверить и записать в журнал значение плотности электролита на всех элементах (после заряда);
  • проверить и записать в журнал значение напряжения на всех элементах (после заряда).

Ежегодные операции:

  • измерить сопротивление изоляции между батареей и корпусом машины. Сопротивление изоляции тяговых батарей в соответствии с DIN VDE 0510, ч. 3 должно быть не менее 50 Ом на каждый вольт номинального напряжения.

Вообще говоря, долив воды требуется примерно 1 раз в 7 циклов (1 раз в неделю при односменной работе), но проверка требуется после каждого заряда, так как вода расходуется неравномерно.


На заметку

При замене щелочных АКБ на свинцово-кислотные надо иметь в виду, что эти аккумуляторы нельзя заряжать вместе, поэтому нужно либо сразу переводить весь парк аккумуляторов на свинцово-кислотные, либо использовать два изолированных зарядных помещения. Кроме того, при замене щелочных АКБ на свинцово-кислотные потребуется сменить зарядное устройство.

Электролит

Электролит в тяговых аккумуляторах играет ключевую роль. Заливают его один раз, при вводе в эксплуатацию, и от его качества зависит стабильность эксплуатации батареи на протяжении ее срока службы (именно поэтому лучше приобретать батареи, залитые и заряженные в заводских условиях). При эксплуатации АКБ во время заряда в результате электролиза вода разлагается на кислород и водород (визуально это выглядит как кипение электролита), вот почему требуется периодически доливать воду. Уровень электролита, как правило, определяют по меткам min и max на заливной пробке. Кроме того, существует система автоматического долива воды Aquamatic, которая существенно ускоряет этот процесс.

Золотые правила

При эксплуатации батарей нужно соблюдать следующие основные правила:

Ни в коем случае не оставлять батарею в разряженном состоянии. После каждого разряда необходимо сразу ставить батарею на подзарядку, иначе начнется необратимый процесс сульфатации пластин. Это приводит к снижению емкости и срока службы батарей.

Разряжать батарею не более чем на 80% (для гелевых АКБ – 60%) . Как правило, за это отвечает датчик разряда, установленный на машине, однако его поломка, отсутствие или неправильная настройка может также привести к сульфатации пластин, перегреву батарей при заряде и в конечном итоге сокращению срока их службы.

В АКБ можно доливать только дистиллированную воду. В обычной воде содержится множество примесей, оказывающих негативное влияние на аккумуляторную батарею. Долив электролита в АКБ для увеличения плотности запрещен: во-первых, это не даст прироста емкости, а во-вторых, вызовет необратимую коррозию пластин.

На заметку

Температура электролита батареи не должна опускаться ниже +10 °С перед зарядом, однако это не запрещает работу в зонах с низкой температурой вплоть до –40 °С. При этом нужно давать батарее достаточно времени для нагрева перед зарядом. Во время заряда батарея нагревается примерно на 10 °С.

Поскольку при понижении температуры АКБ снижается ее полезная емкость, обычные зарядные устройства, основанные на методе заряда Wa или WoWa, будут недозаряжать батарею.

Для заряда рекомендуется использовать «умные» устройства, контролирующие состояние АКБ в процессе заряда, не допускающие недозаряд или перезаряд, например, Tecnys R, либо использовать термокомпенсацию – корректировку зарядного тока в зависимости от температуры АКБ.

Чистка АКБ

Чистота абсолютно необходима не только для хорошего внешнего вида батареи, но в значительно большей степени – для предотвращения несчастных случаев и ущерба, уменьшения срока службы, а также для того, чтобы АКБ находилась в состоянии, пригодном к эксплуатации. Аккумуляторные корпуса, ящики, изоляторы необходимо чистить для обеспечения требуемой изоляции элементов по отношению один к другому, по отношению к земле («массе») или внешним проводящим частям. Кроме того, очистка позволяет избежать коррозионных повреждений и возникновения блуждающих токов. Вне зависимости от времени работы и места на АКБ неизбежно оседает пыль.

Небольшое количество электролита, выступающего из батареи во время заряда после достижения напряжения газообразования, образует более-менее токопроводящий слой на крышках элементов или блоков, по которому протекают блуждающие токи. Результатом является повышенный и неоднородный саморазряд элементов или блоков. Это одна из причин того, почему операторы электрических машин жалуются на упавшую емкость батареи после того, как техника не эксплуатировалась в течение выходных дней.

Бытует мнение, что необслуживаемые системы возможны только на базе гелевых батарей, использование которых влечет естественные ограничения (большое время заряда, сниженная емкость и высокая стоимость). Однако мало кто знает, что необслуживаемые и сверхмалообслуживаемые системы возможны также на базе батарей с жидким электролитом (например, батареи Liberator).

Аккумуляторный журнал и организация работы

При использовании парка электропогрузчиков целесообразно закреплять за каждым погрузчиком свои АКБ. Для этого их нумеруют: 1а, 1б, 2а, 2б и т. д. (батареи с одинаковым номером используются на одном и том же погрузчике). После этого заводят журнал, в котором о каждой АКБ ежедневно отражается информация, проиллюстрированная на примере.

Пример 1
Номер батареи Установлена на погрузчик Поставлена на заряд
Дата Время Показания счетчика, машино-ч Дата Время Плотность (средняя по трем элементам выборочно) Показания счетчика, машино-ч
и т.д.

Таким образом, с помощью данного мероприятия можно избежать использования недозаряженных батарей, а также спрогнозировать и спланировать замену АКБ до полного выхода ее из строя. Помимо этого по каждой батарее целесообразно вести еще один журнал, в котором раз в месяц отражается информация о батарее, перечисленная в примере 2. Эти данные являются основным источником информации для сервисной службы, поэтому зачастую ведение такого журнала является обязательным условием гарантийного обслуживания. За все аккумуляторное хозяйство должен быть ответственен один или два (в случае двухсменной работы) человека. В их обязанности по данной зоне ответственности должны входить прием и выдача АКБ, их обслуживание и заряд, ведение аккумуляторных журналов, прогнозирование выхода АКБ из строя.

История

Свинцовый аккумулятор разработал в 1859-1860 годах Гастон Планте, сотрудник лаборатории Александра Беккереля . В 1878 году Камилл Фор усовершенствовал его конструкцию, покрыв пластины аккумулятора свинцовым суриком .

Принцип действия

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в сернокислотной среде.

Энергия возникает в результате взаимодействия оксида свинца и серной кислоты до сульфата (классическая версия). Проведенные в СССР исследования показали, что внутри свинцового аккумулятора протекает как минимум ~60 реакций, порядка 20 из которых протекают без участия кислоты электролита (нехимические)

Во время разряда происходит восстановление диоксида свинца на катоде и окисление свинца на аноде . При заряде протекают обратные реакции, к которым в конце заряда добавляется реакция электролиза воды, сопровождающаяся выделением кислорода на положительном электроде и водорода - на отрицательном.

Химическая реакция (слева направо - разряд, справа налево - заряд):

В итоге получается, что при разряде аккумулятора расходуется серная кислота из электролита (и плотность электролита падает, а при заряде, серная кислота выделяется в раствор электролита из сульфатов, плотность электролита растёт). В конце заряда, при некоторых критических значениях концентрации сульфата свинца у электродов, начинает преобладать процесс электролиза воды. При этом на катоде выделяется водород , на аноде - кислород . При заряде не стоит допускать электролиза воды, в противном случае необходимо её долить для восполнения потерянного в ходе электролиза количества.

Устройство

Элемент свинцово-кислотного аккумулятора состоит из электродов (положительных и отрицательных) и разделительных изоляторов (сепараторов), которые погружены в электролит . Электроды представляют собой свинцовые решётки. У положительных активным веществом является перекись свинца (PbO 2), у отрицательных активным веществом является губчатый свинец .

На самом деле электроды выполнены не из чистого свинца, а из сплава с добавлением сурьмы в количестве 1-2 % для повышения прочности и примесей. Иногда в качестве легирующего компонента используются соли кальция, в обеих пластинах, или только в положительных. Применение солей кальция вносит не только положительные но и много отрицательных моментов в эксплуатацию свинцового аккумулятора, например, у такого аккумулятора при глубоких разрядах существенно и необратимо снижается емкость.

Электроды погружены в электролит, состоящий из разбавленной дистиллированной водой серной кислоты (H 2 SO 4). Наибольшая проводимость этого раствора наблюдается при комнатной температуре (что означает наименьшее внутреннее сопротивление и наименьшие внутренние потери) и при его плотности 1,23 г/см³

Однако на практике, часто в районах с холодным климатом применяются и более высокие концентрации серной кислоты, до 1,29 −1,31 г/см³.

Существуют экспериментальные разработки аккумуляторов где свинцовые решетки заменяют вспененным карбоном , покрытым тонкой свинцовой пленкой. Используя меньшее количество свинца и распределив его по большой площади, батарею удалось сделать не только компактной и легкой, но и значительно более эффективной - помимо большего КПД, она заряжается значительно быстрее традиционных аккумуляторов.

В результате каждой реакции образуется нерастворимое вещество - сернокислый свинец PbSO 4 , осаждающийся на пластинах, который образует диэлектрический слой между токоотводами и активной массой. Это один из факторов, влияющий на срок службы свинцово-кислотной аккумуляторной батареи.

Основными процессами износа свинцово-кислотных аккумуляторов являются:

Хотя батарею, вышедшую из строя по причине физического разрушения пластин, самому починить нельзя, некоторые источники описывают химические растворы и прочие способы способные «десульфатировать» пластины. Простой но вредный для жизни аккумулятора способ предполагает использование раствора сульфата магния . Раствор заливается в секции после чего батарею разряжают и заряжают несколько раз. Сульфат свинца и прочие остатки химической реакции осыпаются при этом на дно батареи, что может привести к замыканию секции поэтому обработанные секции желательно промыть и заполнить новым электролитом номинальной плотности. Это позволяет несколько продлить срок использования устройства. Если батарея имеет одну или несколько секций которые не работают (то есть не дают 2.17 вольта - например если корпус имеет трещины) возможно соединить две (или больше) батареи последовательно: к плюсовому контакту первой батареи подключаем плюсовой провод потребителя, к минусовому контакту второй батареи - минусовой провод потребителя, а две оставшихся контакта батареи соединяются кабелем. Такая батарея имеет суммарное напряжение работающих секций и поэтому количество работающих секций должно быть не более шести - то есть необходимо слить электролит из излишних секций. Такой вариант подходит для транспортных средств с большим моторным отсеком.

Вторичная переработка

Вторичная переработка для этого вида аккумуляторов играет важную роль, так как свинец, содержащийся в аккумуляторах является тяжелым металлом и наносит серьёзный вред при попадании в окружающую среду. Свинец и его соли должны быть переработаны на специальных предприятиях для возможности его вторичного использования.

Выброшенные аккумуляторы часто используются как источник свинца для кустарной переплавки, например, в рыболовные грузила, дробь или гири. Для этого из аккумулятора сливается электролит, остатки нейтрализуются промыванием каким-либо безвредным основанием (например, гидрокарбонатом натрия), после чего корпус батареи разбивается и извлекается металлический свинец .

См. также

Примечания

Ссылки

  • ГОСТ 15596-82
  • ГОСТ Р 53165-2008 Батареи аккумуляторные свинцовые стартерные для автотракторной техники. Общие технические условия. Взамен ГОСТ 959-2002 и ГОСТ 29111-91
  • Видео, демонстрирующее принцип работы аккумулятора на YouTube
  • Обслуживание и Восстановление свинцовых АКБ системы AGM"


Дисциплина: Эксплуатация оборудования электрических сетей

Лекция № 9 «Обслуживание Систем оперативного постоянного тока»

9.1Эксплуатация кислотных аккумуляторных батарей. 1

9.2 Требования к помещениям аккумуляторных батарей. 3

9.3 Приготовление кислотного электролита, меры безопасности. 3

9.4 Контроль режимов работы отечественных аккумуляторных батарей по напряжению 4

9.5 Режим работы систем вентиляции помещений. 4

9.6 Осмотр отечественных аккумуляторных батарей в процессе эксплуатации 5

9.7 Импортные аккумуляторные батареи, краткая характеристика, их преимущества в эксплуатации. 5

9.8 Щиты постоянного тока и их техническое обслуживание. 12

9.9 Техническая документация, приборы и инвентарь для эксплуатации АБ, ремонты. 20

Эксплуатация кислотных аккумуляторных батарей

При эксплуатации аккумуляторных установок должны быть обеспечены их длительная надёжная работа и необходимый уровень напряжения на шинах постоянного тока в нормальных и аварийных режимах. При приёмке вновь смонтированной или вышедшей из капитального ремонта аккумуляторной батареи должны быть проверены: ёмкость батареи током 10-часового разряда, качество заливаемого электролита, напряжение элементов в конце заряда и разряда и сопротивление изоляции батареи относительно земли. Батареи должны вводиться в эксплуатацию после достижения ими 100% номинальной ёмкости. Аккумуляторные батареи (АБ) должны эксплуатироваться в режиме постоянного подзаряда. Для батарей типа СК напряжение подзаряда должно составлять 2,2±0,05 В на элемент, для батарей типа СН 2,18±0,04 В на элемент. На отечественных АБ подзарядная установка должна обеспечивать стабилизацию напряжения на шинах батареи с отклонениями, не превышающими 2% номинального напряжения. (для отечественных АБ). Дополнительные элементы батареи, постоянно не используемые в работе, должны эксплуатироваться в режиме постоянного подзаряда.Кислотные батареи должны эксплуатироваться без тренировочных разрядов и периодических уравнительных перезарядов. Один раз в год должен быть произведён уравнительный заряд батареи типа СК напряжением 2,3 - 2,35 В на элемент до достижения установившегося значения плотности электролита во всех элементах 1,2-1,21 г/см 3 при температуре 20°С.Продолжительность уравнительного заряда зависит от состояния батареи и должна быть не менее 6 ч.Уравнительные заряды батарей типа СН производятся при напряжении 2,25 - 2,4 В до достижения плотности электролита 1,235 - 1,245 г/см 3 .На подстанциях не менее 1 раза в год должна проверяться работоспособность батареи по падению напряжения при толчковых токах (включением на максимальную нагрузку посадка напряжения не должна превышать 0,65 U Н, а контрольные разряды производятся по мере необходимости. Значение тока разряда каждый раз должно быть одно и то же. Результаты измерений при контрольных разрядах должны сравниваться с результатами измерений предыдущих разрядов. Заряжать и разряжать батарею допускается током, значение которого не выше максимального для данной батареи.Температура электролита в конце заряда должна быть не выше 40°С для батарей типа СК. Для батарей типа СН температура должна быть не выше 35°С при максимальном зарядном токе.


Уровень электролита должен быть:выше верхнего края электродов на 10-15 мм для стационарных аккумуляторов с поверхностно- коробчатыми пластинами типа СК;в пределах 20-40 мм над предохранительным щитком для стационарных аккумуляторов с намазанными пластинами типа СН.

При применении выпрямительных устройств для подзаряда и заряда аккумуляторных батарей цепи переменного и постоянного тока должны быть связаны через разделительный трансформатор. Выпрямительные устройства должны быть оборудованы устройствами сигнализации об отключении.

Коэффициент пульсации на шинах постоянного тока не должен превышать допустимых значений по условиям питания устройств РЗА.Напряжение на шинах постоянного тока, питающих цепи управления, устройства релейной защиты, сигнализации, автоматики и телемеханики, в нормальных эксплуатационных условиях допускается поддерживать на 5% выше номинального напряжения электроприемников.Все сборки и кольцевые магистрали постоянного тока должны быть обеспечены резервным питанием.

Сопротивление изоляции аккумуляторной батареи в зависимости от номинального напряжения должно быть следующим:

Устройство для контроля изоляции на шинах постоянного оперативного тока должно действовать на сигнал при понижении сопротивления изоляции полюсов до уровня 20 кОм в сети 220 В, 10 кОм в сети 110 В, 6 кОм в сети 60 В, 5 кОм в сети 48 В, 3 кОм в сети 24 В.В условиях эксплуатации сопротивление изоляции сети постоянного тока должно быть не ниже двукратного значения указанной уставки устройства для контроля изоляции.

При срабатывании устройства сигнализации в случае понижения уровня изоляции относительно земли в цепи оперативного тока должны быть немедленно приняты меры к устранению неисправностей. При этом производство работ без снятия напряжения в этой сети, за исключением поисков места повреждения изоляции, не допускается.

Для энергообъектов, на которых применяются микроэлектронные или микропроцессорные устройства РЗА, использовать метод определения мест понижения сопротивления изоляции путем поочерёдного отключения присоединений на щите постоянного тока не рекомендуется. Анализ электролита кислотной аккумуляторной батареи должен проводиться ежегодно по пробам, взятым из контрольных элементов. Количество контрольных элементов должно быть установлено техническим руководителем энергообъекта в зависимости от состояния батареи, но не менее 10%. Контрольные элементы должны ежегодно меняться. При контрольном разряде пробы электролита должны отбираться в конце разряда. Для доливки должна применяться дистиллированная вода, проверенная на отсутствие хлора и железа. Допускается использование парового конденсата, удовлетворяющего требованиям государственного стандарта на дистиллированную воду.Для уменьшения испарения баки аккумуляторных батарей типов С и СК должны накрываться пластинами из стекла или другого изоляционного материала, не вступающего в реакцию с электролитом. Использование масла для этой цели запрещается.

Понравилось? Лайкни нас на Facebook