Ракетные двигатели. Ракетные двигатели Ракетные двигатели рд 180 где производят

Что первое приходит на ум при словосочетании «ракетные двигатели»? Конечно же, загадочный космос, межпланетные полеты, открытие новых галактик и манящее сияние далеких звезд. Во все времена небо притягивало к себе человека, оставаясь при этом неразгаданной тайной, но создание первой космической ракеты и ее запуск открыли человечеству новые горизонты исследований.

Ракетные двигатели по своей сути – это обычные реактивные двигатели с одной немаловажной особенностью: для создания реактивной тяги в них не используется атмосферный кислород в качестве окислителя топлива. Все, что нужно для его работы, находится либо непосредственно в его корпусе, либо в системах подачи окислителя и топлива. Именно эта особенность и дает возможность использовать ракетные двигатели в открытом космосе.

Видов ракетных двигателей очень много и все они разительно отличаются между собой не только особенностями конструкции, но и принципом работы. Именно поэтому каждый вид нужно рассматривать отдельно.

Среди основных рабочих характеристик ракетных двигателей особое внимание уделяется удельному импульсу – отношению величины реактивной тяги к массе расходуемого за единицу времени рабочего тела. Значение удельного импульса отображает эффективность и экономичность двигателя.

Химические ракетные двигатели (ХРД)

Этот тип двигателей на сегодняшний день является единственным, который массово используется для выведения в открытый космос космических аппаратов, кроме того, он нашел применение и в военной промышленности. Химические двигатели делятся на твердо- и жидкотопливные в зависимости от агрегатного состояния ракетного топлива.

История создания

Первыми ракетными двигателями были твердотопливные, а появились они несколько веков назад в Китае. С космосом их тогда мало что связывало, зато с их помощью можно было запускать военные ракеты. В качестве топлива использовался порошок, по составу напоминающий порох, только процентное соотношение его составляющих было изменено. В результате при окислении порошок не взрывался, а постепенно сгорал, выделяя тепло и создавая реактивную тягу. Такие двигатели с переменным успехом дорабатывались, совершенствовались и улучшались, но их удельный импульс все равно оставался малым, то есть конструкция была неэффективной и неэкономичной. Вскоре появились новые виды твердого топлива, позволяющие получить больший удельный импульс и развивать большую тягу. Над его созданием в первой половине ХХ века трудились ученые СССР, США и Европы. Уже во второй половине 40-х годов был разработан прототип современного топлива, используемого и сейчас.

Ракетный двигатель РД — 170 работает на жидком топливе и окислителе.

Жидкостные ракетные двигатели – это изобретение К.Э. Циолковского, который предложил их в качестве силового агрегата космической ракеты в 1903 году. В 20-х годах работы по созданию ЖРД начали проводиться в США, в 30-хх годах – в СССР. Уже к началу Второй мировой войны были созданы первые экспериментальные образцы, а после ее окончания ЖРД стали выпускаться серийно. Использовались они в военной промышленности для оснащения баллистических ракет. В 1957 году впервые в истории человечества был запущен советский искусственный спутник. Для его запуска использовалась ракета, оснащенная РЖД.

Устройство и принцип работы химических ракетных двигателей

Твердотопливный двигатель вмещает в своем корпусе топливо и окислитель в твердом агрегатном состоянии, причем контейнер с топливом – это одновременно и камера сгорания. Топливо обычно имеет форму стержня с центральным отверстием. В процессе окисления стержень начинает сгорать от центра к периферии, а газы, полученные в результате сгорания, выходят через сопло, образуя тягу. Это самая простая конструкция среди всех ракетных двигателей.

В жидкостных РД топливо и окислитель находятся в жидком агрегатном состоянии в двух раздельных резервуарах. По каналам подачи они попадают в камеру сгорания, где смешиваются и происходит процесс горения. Продукты сгорания выходят через сопло, образуя тягу. В качестве окислителя обычно используется жидкий кислород, а топливо может быть разным: керосин, жидкий водород и т.д.

Плюсы и минусы химических РД, их сфера применения

Достоинствами твердотопливных РД являются:

  • простота конструкции;
  • сравнительная безопасность в плане экологии;
  • невысокая цена;
  • надежность.

Недостатки РДТТ:

  • ограничение по времени работы: топливо сгорает очень быстро;
  • невозможность перезапуска двигателя, его остановки и регулирования тяги;
  • небольшой удельный вес в пределах 2000-3000 м/с.

Анализируя плюсы и минусы РДТТ, можно сделать вывод, что их использование оправдано только в тех случаях, когда нужен силовой агрегат средней мощности, достаточно дешевый и простой в исполнении. Сфера их использования – баллистические, метеорологические ракеты, ПЗРК, а также боковые ускорители космических ракет (ими оснащаются американские ракеты, в советских и российских ракетах их не использовали).

Достоинства жидкостных РД:

  • высокий показатель удельного импульса (порядка 4500 м/с и выше);
  • возможность регулирования тяги, остановки и перезапуска двигателя;
  • меньший вес и компактность, что дает возможность выводить на орбиту даже большие многотонные грузы.

Недостатки ЖРД:

  • сложная конструкция и пуско-наладочные работы;
  • в условиях невесомости жидкости в баках могут хаотично перемещаться. Для их осаждения нужно использовать дополнительные источники энергии.

Сфера применения ЖРД – это в основном космонавтика, так как для военных целей эти двигатели слишком дорогие.

Несмотря на то, что пока химические РД – единственные способные обеспечить вывод ракет в открытый космос, их дальнейшее усовершенствование практически невозможно. Ученые и конструкторы убеждены, что предел их возможностей уже достигнут, а для получения более мощных агрегатов с большим удельным импульсом необходимы другие источники энергии.

Ядерные ракетные двигатели (ЯРД)

Этот тип РД в отличие от химических вырабатывает энергию не при сгорании топлива, а в результате нагревания рабочего тела энергией ядерных реакций. ЯРД бывают изотопными, термоядерными и ядерными.

История создания

Конструкция и принцип работы ЯРД были разработаны еще в 50-хх годах. Уже в 70-хх годах в СССР и США были готовы экспериментальные образцы, которые успешно проходили испытания. Твердофазный советский двигатель РД-0410 с тягой в 3,6 тонны испытывался на стендовой базе, а американский реактор «NERVA» должен был устанавливаться на ракету «Сатурн V» до того, как спонсирование лунной программы было остановлено. Параллельно велись работы и над созданием газофазных ЯРД. Сейчас действуют научные программы по разработке ядерных РД, проводятся эксперименты на космических станциях.

Таким образом, действующие модели ядерных ракетных двигателей уже есть, но пока ни один из них так и не был задействован вне лабораторий или научных баз. Потенциал таких двигателей довольно высокий, но и риск, связанный с их использованием, тоже немалый, так что пока они существуют только в проектах.

Устройство и принцип действия

Ядерные ракетные двигатели бывают газо-, жидко- и твердофазными в зависимости от агрегатного состояния ядерного топлива. Топливо в твердофазных ЯРД – это ТВЭЛы, такие же, как в ядерных реакторах. Они находятся в корпусе двигателя и в процессе распада делящегося вещества выделяют тепловую энергию. Рабочее тело – газообразный водород или аммиак – контактируя с ТВЭЛом, поглощает энергию и нагревается, увеличиваясь в объеме и сжимаясь, после чего выходит через сопло под высоким давлением.

Принцип работы жидкофазного ЯРД и его устройство аналогично твердофазным, только топливо находится в жидком состоянии, что позволяет увеличить температуру, а значит и тягу.

Газофазные ЯРД работают на топливе в газообразном состоянии. Обычно в них используется уран. Газообразное топливо может удерживаться в корпусе электрическим полем или же находится в герметичной прозрачной колбе – ядерной лампе. В первом случае возникает контакт рабочего тела с топливом, а также частичная утечка последнего, поэтому кроме основной массы топлива в двигателе должен быть предусмотрен его запас для периодического пополнения. В случае с ядерной лампой утечки не происходит, а топливо полностью изолировано от потока рабочего тела.

Преимущества и недостатки ЯРД

Ядерные ракетные двигатели имеют огромное преимущество в сравнении с химическими – это высокий показатель удельного импульса. Для твердофазных моделей его величина составляет 8000-9000 м/с, для жидкофазных – 14000 м/с, для газофазных – 30000 м/с. Вместе с тем, их использование влечет за собой заражение атмосферы радиоактивными выбросами. Сейчас ведутся работы по созданию безопасного, экологичного и эффективного ядерного двигателя, и главным «претендентом» на эту роль является газофазный ЯРД с ядерной лампой, где радиоактивное вещество находится в герметичной колбе и не выходит наружу с реактивным пламенем.

Электрические ракетные двигатели (ЭРД)

Еще один потенциальный конкурент химических РД – электрический РД, работающий за счет электрической энергии. ЭРД может быть электротермическим, электростатическим, электромагнитным или импульсным.

История создания

Первый ЭРД был сконструирован в 30-х годах советским конструктором В.П. Глушко, хотя идея создания такого двигателя появилась еще в начале ХХ века. В 60-х годах ученые СССР и США активно работали над созданием ЭРД, и уже в 70-х годах первые образцы начали использоваться в космических аппаратах в качестве двигателей управления.

Устройство и принцип работы

Электроракетная двигательная установка состоит из самого ЭРД, строение которого зависит от его типа, систем подачи рабочего тела, управления и электропитания. Электротермический РД нагревает поток рабочего тела за счет тепла, выделяемого нагревательным элементом, или в электрической дуге. В качестве рабочего тела используется гелий, аммиак, гидразин, азот и другие инертные газы, реже – водород.

Электростатические РД делятся на коллоидные, ионные и плазменные. В них заряженные частицы рабочего тела ускоряются за счет электрического поля. В коллоидных или ионных РД ионизация газа обеспечивается ионизатором, высокочастотным электрическим полем или газоразрядной камерой. В плазменных РД рабочее тело – инертный газ ксенон – проходит через кольцевой анод и попадает в газоразрядную камеру с катод-компенсатором. При высоком напряжении между анодом и катодом вспыхивает искра, ионизирующая газ, в результате чего получается плазма. Положительно заряженные ионы выходят через сопло с большой скоростью, приобретенной за счет разгона электрическим полем, а электроны выводятся наружу катодом-компенсатором.

Электромагнитные РД имеют свое магнитное поле – внешнее или внутреннее, которое ускоряет заряженные частицы рабочего тела.

Импульсные РД работают за счет испарения твердого топлива под действием электрических разрядов.

Преимущества и недостатки ЭРД, сфера использования

Среди преимуществ ЭРД:

  • высокий показатель удельного импульса, верхний предел которого практически не ограничен;
  • малый расход топлива (рабочего тела).

Недостатки:

  • высокий уровень потребления электроэнергии;
  • сложность конструкции;
  • небольшая тяга.

На сегодняшний день использование ЭРД ограничено их установкой на космические спутники, а в качестве источников электроэнергии для них применяются солнечные батареи. Вместе с тем именно эти двигатели могут стать теми силовыми установками, которые дадут возможность исследовать космос, поэтому работы по созданию их новых моделей активно ведутся во многих странах. Именно эти силовые установки чаще всего упоминали фантасты в своих произведениях, посвященных покорению космоса, их же можно встретить и в научно-фантастических фильмах. Пока именно ЭРД является надеждой на то, что люди все же смогут путешествовать к звездам.

История

В 1-м квартале 2013 года «НПО Энергомаш» закончило испытания двигателя РД-193 и приступило к подготовке документации по адаптации его к ракете-носителю .

Конструкция

Двигатель представляет собой упрощенную версию РД-191 . Отличается отсутствием узла качания камеры и связанных с ним других конструктивных элементов, что позволило уменьшить габариты и массу (на 300 кг ), а также снизило его стоимость .

Модификации

РД-181

РД-181 - экспортный вариант двигателя . Используется узел качания камеры и сопла, в отличие от РД-193. Устанавливается на первой ступени РН «Антарес» компании Orbital Sciences Corporation . Он принадлежит семейству жидкостных ракетных двигателей РД-170 и представляет собой однокамерный ЖРД с вертикально расположенным турбонасосным агрегатом. Двигатель дросселируется по тяге в диапазоне 47-100 %, управление вектором тяги - 5°.

В 2012 году были начаты работы между Orbital Sciences Corporation и НПО «Энергомаш» по замене двигателя AJ-26 первой ступени РН «Антарес». В 2013 году были начаты конкурсные процедуры среди АО «НПО Энергомаш» и ПАО «Кузнецов».

В декабре 2014 года был заключен контракт между Orbital Sciences Corporation и НПО «Энергомаш» стоимостью 224,5 млн USD на поставку 20 РД-181 с опционом на закупку дополнительных двигателей до 31 декабря 2021 года .

В 2014 году была выпущена конструкторская документация, в начале 2015 года проведено первое огневое испытание двигателя РД-181, а в мае успешно завершена сертификация этого двигателя .

Летом 2015 года первые товарные двигатели РД-181 были поставлены в США , всего в 2015 году было поставлено четыре двигателя .

Первый запуск РН «Антарес» с использованием двигателей РД-181 состоялся 17 октября 2016 года .

Примечания

  1. В России создан новый ракетный двигатель (неопр.) . ВПК (8 апреля 2013). Архивировано 6 июня 2013 года.
  2. В разработке - сверхмощные ракетные двигатели (неопр.) . РГРК «Голос России» (22 февраля 2012). Дата обращения 5 июня 2013. Архивировано 6 июня 2013 года.
  3. Новый двигатель для лёгкой ракеты «Союз» подготовят к серийному производству в конце года (неопр.) . Журнал «Новости космонавтики» (8 апреля 2013). Дата обращения 5 июня 2013. Архивировано 6 июня 2013 года.
  4. Огнев В. . Универсальный ракетный двигатель РД-193. Мнение инженера-разработчика , Журнал «Новости космонавтики». (2013).
  5. Российский космос: новые двигатели, новые системы (неопр.) . Эхо Москвы (8 апреля 2013). Архивировано 10 апреля 2013 года.
  6. Афанасьев И. «Энергомаш» в новом тысячелетии // Новости космонавтики . - 2012. - Т. 22 , № 8 .
  7. СЕРГЕЙ ГУСЕВ, НАЧАЛЬНИК ОТДЕЛА ЖРД, О ПРОГРАММЕ РД-181 (рус.) . «НПО Энергомаш» (апрель 2017). Архивировано 4 августа 2017 года.
  8. ГОДОВОЙ ОТЧЕТ ОАО «НПО «Энергомаш» за 2014 год (неопр.) . «НПО «Энергомаш» (2015).

К началу работ над двигателями 11Д520 и 11Д521 НПО "Энергомаш" (прежние названия ОКБ-456 и КБ ЭМ) обладал опытом создания двигателей с высоким давлением в КС, построенных по замкнутой схеме и работавших на высококмпящих компонентах (AT и НДМГ).

В частности, для баллистических ракет были созданы двигатели 15Д119 (РД-263/264) тягой P з =1040 кН (106 т) и давлением в КС 20.6 МПа, и 15Д168 (РД-268) тягой P з =1147 кН (117 т) и с давлением в КС 22.6 МПа. В процессе работы над этими двигателями на заводе при КБ усовершенствовали технологию стального литья сложных силовых деталей (например, корпусов насосов и агрегатов автоматики, которые ранее изготавливаться из цветных металлов). Для исключения возникновения неустойчивости горения в камере ЖРД были внедрены пластмассовые антипульсационные перегородки, устанавливаемые на смесительную головку и способствовавшие затуханию пульсаций давления.

Определенный задел был обеспечен также разработкой двигателя 8Д420 (РД-270) тягой 640 т и давлением в КС 26.1 МПа, работающего по схеме "газ-газ". Среди прочего, для этого двигателя были разработаны специальные стояночные уплотнения ТНА для обеспечения многократности запуска, а для уменьшения массы и габаритов ТНА была разработана конструкция бустерных насосов с расположением лопаток турбины непосредственно на рабочем колесе-шнеке насосна.

Опыт проектирования и экспериментальных испытаний крупномасштабных двигателей и агрегатов, работающих при давлениях до 60 МПа, а также освоенные технологии изготовления таких агрегатов были использованы при работе над двигателями 11Д520 и 11Д521.

Двигатель выполнен по замкнутой схеме с дожиганием окислительного генераторного газа после турбины.
Компоненты топлива: окислитель - жидкий кислород, горючее - керосин.

Двигатель состоит из четырех камер сгорания, турбонасосного агрегата (ТНА), бустерного насосного агрегата горючего (БНАГ), бустерного насосного агрегата окислителя (БНАО), двух газогенераторов, блока управления автоматикой, блока баллонов, системы приводов автоматики (СПА), системы рулевых приводов (СРП), регулятора расхода горючего в газогенераторе, двух дросселей окислителя, дросселя горючего, пуско-отсечных клапанов окислителя и горючего, четырех ампул с пусковым горючим, пускового бачка, рамы двигателя, донного экрана, датчиков системы аварийной защиты, двух теплообменников для подогрева гелия на наддув бака окислителя.

Одна из основных конструктивных особенностей этого двигателя - наличие четырех камер, качающихся в двух плоскостях, и двух газогенераторов, работающих на одну турбину. Четыре камеры сгорания позволили иметь параметры камеры по тяге, близкие к освоенному диапазону: 185 т тяги при достигнутых в других разработках 150 т. Кроме того, наличие четырех камер и двух ГГ позволяет организлвать автономную отработку этих агрегатов.


Рис.1. Двигатель РД-170 (без рулевых приводов; изображение увеличивается при нажатии)

Турбонасосный агрегат располагается между камерами, и его ось параллельна оси камер. Такое решение позволяет оптимально разместить двигатель в ограниченных габаритах хвостового отсека РН.

Для обеспечения ремонтопригодности конструкции широко используются разъемные фланцевые соединения. Для обеспечения герметичности напряженных фланцев большого диаметра используются самоуплотняющиеся двухбарьерные уплотнения с металлическими прокладками.

При разработке двигателя было предусмотрено обеспечение возможности не менее двадцатикратного его использования в составе носителя, включая межполетные огневые проверки в составе блока. Гарантированные запасы работоспособности двигателей по ресурсу и количеству включений, сверх потребных в эксплуатации (перед последним использованием), должны составлять не менее 5, необходимых для одного полета.

В конце 80-х годов максимальное количество на одном экземпляре двигателя составило 21 испытание.

Таблица 1. Технические параметры двигателя

Параметр Значение Единицы
Тяга
у Земли 740 000 кг
7256 кН
в пустоте 806 000 кг
7904 кН
Пределы дросселирования тяги 100-40 %
Удельный импульс тяги
в вакууме 337 с
на уровне моря 309 с
Давление в камере сгорания 24.5 МПа
Расход компонентов топлива через двигатель 2393 кг/с
Коэффициент соотношение компонентов 2.63 m(ок)/m(г)
Регулирование соотношения компонентов ±7 %
Время работы 140-150 с
Масса двигателя
сухого 9755 кг
залитого 10750 кг
Габариты
высота 4015 мм
диаметр в плоскости среза сопел 3565 мм

Двигатель содержит содержит камеру сгорания 1, турбонасосный агрегат 2, состоящий из турбины 3, двухступенчатого насоса горючего 4 и одноступенчатого насоса окислителя 5, два газогенератора 6, бустерный насос горючего 7, приводом которого является гидравлическая турбина 8, и бустерный насос окислителя 9, приводом которого является газовая турбина 10.

Бустерный насос окислителя (БНАО) 9 через трубопровод 11 соединен со входом насоса окислителя 5, выход которого через пускоотсечной клапан 12 соединен с коллекторной полостью 13 смесительной головки 14 газогенератора 6. На входе БНАО установлен фильтр окислителя.

Бустерный насос горючего (БНАГ) 7 через трубопровод 15 соединен со входом первой ступени 16 насоса горючего 4. Первая ступень насоса горючего 16 соединена со входом второй ступени 17 насоса горючего и через трубопровод 18, в котором установлен дроссель 19 с электроприводом 20, соединена с коллектором 21 камеры сгорания 1, из которого горючее распределяется по каналам 22 регенеративного охлаждения камеры сгорания 1. На входе БНАГ установлен фильтр горючего.

Каналы 22 регенеративного охлаждения сопла 23 через коллектор 24 соединены с пускоотсечным клапаном 25. Выход этого клапана соединен с коллектором 26, размещенным на цилиндрической части камеры сгорания. Выход коллектора 26 через регенеративные каналы 27 охлаждения цилиндрической части камеры сгорания соединен с полостью горючего 28 смесительной головки 29 камеры сгорания 1.

Вторая ступень 17 насоса горючего 4 (через который проходит 20% от общего расхода горючего) через трубопровод 30 соединена с основным входом 31 регулятора тяги 32, управляемого электроприводом 33 и имеющим на входе обратный клапан 34. Выход 35 регулятора тяги 32 соединен с ампулами 36 (2 шт.), заполненными пусковым горючим триэтилалюминием Аl(С 2 Н 5) з. Выходы из этих ампул через пускоотсечные клапаны 37 соединены с полостью горючего 38 смесительных головок 39 газогенераторов 6. Выход газогенераторов 40 соединен с турбиной 3, выход которой через трубопроводы 41 соединен с полостью 42 смесительных головок 29 камер сгорания 1.

Кроме того, выход из турбины 3 через трубопровод 43, в котором установлен теплообменник 44 и клапан давления 45, соединен с коллектором турбины 46 привода бустерного насоса 9 окислителя.

Пневмогидравлическая схема ЖРД содержит также систему запуска, которая включает пусковой бачок 47 с разделительной мембраной 48, патрубок 49 подвода газа высокого давления и выходной патрубок 50. Выходной патрубок 50 пускового бачка 47 через заправочный клапан 51 соединен с трубопроводом 15 подвода горючего от бустерного насоса горючего 7. Кроме того, выходной патрубок 50 с одной стороны через трубопровод 52, в котором установлен обратный клапан 53, соединен со вторым входом 54 регулятора тяги 32, через который осуществляется запуск двигателя, а с другой стороны - через обратный клапан 55 - соединен с ампулой 56, заполненной пусковым горючим (гиперголем), выход которой через клапан 57 соединен с магистралью 58 подвода пускового горючего к форсункам зажигания 59 камеры сгорания. В магистрали 58 установлен жиклер 60, обеспечивающий дозированную подачу пускового горючего к форсункам зажигания.

Для уменьшения импульса последействия пускоотсечные клапаны горючего установлены между охлаждающими трактами сопла и камеры сгорания (клапаны 25), а также перед коллектором второго и третьего поясов завес (показаны на рис. 2.2).

Пневмоклапаны приводятся в действие гелием от блока баллонов высокого давления с помощью электроклапанов.

Работа двигателя
Запуск двигателя происходит по схеме "самозапуска". Предварительно приводы 20 и 33 устанавливаются в положения, обеспечивающие начальную установку регулятора тяги 32 и дросселя 19. Затем открывают подбаковые клапаны ракеты (на схеме не показаны) и под воздействием гидростатического напора и давления наддува компоненты топлива заполняют полости насосов окислителя и горючего до пускоотсечных клапанов 12 и 25 и обратного клапана 34 регулятора тяги 32 соответственно. Заполнение полостей двигателя горючим производится до пусковых ампул 36 и 56 через заправочной клапан 51, обратные клапаны 53 и 55. Пусковой бачок 47 также заполняется основным горючим. Такое состояние считается исходным для запуска двигателя.

При запуске двигателя производится наддув бачка 47 и вытеснение из него горючего, давление которого прорывает мембраны (не показаны) пусковых ампул 36 и 56. Одновременно производится открытие пускоотсечных клапанов 12 и 37 и 25 соответственно. В результате пусковое горючее из ампул 36 и 56 под действием давления, создаваемого пусковым бачком, поступает в газогенераторы (через открытые клапаны 37) и камеры (через обратные клапаны 57). Пусковое горючее, поступающее в газогенераторы, воспламеняется с кислородом, также поступающим в газогенераторы за счет предпускового наддува баков ракеты и гидростатического напора в них. Горючее, пройдя по охлаждаемому тракту камер сгорания, через фиксированное время поступает в смесительные головки камер сгорания 1. В течение этого времени задержки, в газогенераторах успевает начаться процесс горения и вырабатываемый генераторный газ раскручивает турбину 3 ТНА 2. После турбины окислительный газ поступает по четырем охлаждаемым газоводам 41 в смесительные головки 29 четырех камер сгорания, где воспламеняется с пусковым горючим, поступающим из форсунок зажигания 59 и впоследствии дожигается с поступающим в камеры горючим. Время поступления обоих компонентов в камеры сгорания подобрано так, что ТНА 2 успевает выйти на рабочий режим, пока в камерах 1 еще не установилось противодавление.

По мере роста давления за насосом горючего 17 пусковой бачок 47 автоматически выключается из работы посредством закрытия обратных клапанов 53 и 55, а питание горючим газогенераторов 6 переключается на насос 17 за счет программного открытия дросселя регулятора тяги 32.

Часть окислительного газа с выхода турбины отбирается на привод двухступенчатой газовой турбины 10 бустерного преднасоса 9. Этот газ, проходя через теплообменник 44, нагревает газ, идущий на наддув баков ракеты. После турбины 10 газ сбрасывается в выходной коллектор 11, где он смешивается с основным потоком окислителя и конденсируется. Использование газа, отбираемого с выхода турбины ТНА, в качестве рабочего тела привода турбины бустерного насоса окислителя позволяет уменьшить температуру в газогенераторе и соответственно снизить мощность турбины ТНА.

Часть горючего с выхода насоса 4 поступает на привод одноступенчатой гидравлической турбины 8 бустерного насоса горючего 7.

Небольшая часть жидкого кислорода отбирается из коллекторов газогенераторов и поступает в охлаждающий тракт корпуса турбины и газоводов.

На всем этапе запуска двигателя производится программное управление открытием дросселя регулятора тяги 32 и дросселя горючего 19 из положений начальной установки в положения, соответствующие номинальному режиму двигателя с помощью соответствующих приводов 33 и 20.

Таким образом осуществляется плавный запуск двигателя с выходом на основной режим через 3 секунды.

Перед выключением двигатели переводятся на режим конечной ступени, составляющий 50% от номинального.

Таблица 1а. Упрощенная циклограмма работы двигателя 11Д521 в составе блока "А" РН "Энергия"
(по программе полета 15 ноября 1988 года)

Время (с) от команды старт ("контакт подъема") Описание (Условие)
1 -3.2 Запуск, программный набор стартовой тяги.
2 -0.2 Выход на главную ступень тяги.
3 38 Начало программного дросселирования для уменьшения скоростного напора.
4 74 Окончание программного дросселирования для уменьшения скоростного напора.
5 108.5 Начало программного дросселирования для ограничения продольной перегрузки до 2.95 ед.
6 130 Перевод двигателя в режим конечной ступени тяги 49.5%.
7 142 Выключение двигателей.

Камера представляет собой паяно-сварной неразъемный узел и состоит из смесительной головки, камеры сгорания и сопла. Крепление камеры к газовому тракту осуществляется при помощи фланцевого соединения.

Таблица 2. Технические параметры камеры

Параметр Значение Единицы
Приведенная длина КС 1079.6 мм
Диаметр КС 380 мм
Диаметр минимального сечения сопла 235.5 мм
Степень сужения дозвуковой
части сопла
2.6
Диаметр выходного сечения сопла 1430 мм
Степень расширения сверзвуковой
части сопла
36.87
Длина камеры 2261 мм
Температура в КС 3676 K
Давление в КС 24.5 МПа
Давление в выходном сечении сопла 0.072 МПа
Коэффициент тяги
в вакууме 1.86
на уровне моря 1.71
Угол отклонения камеры 8 градусы
Рис.4. Схема подвода горючего в охлаждающий тракт камеры :
  1. газовод
  2. среднее днище смесительной головки
  3. переднее (огневое) днище смесительной головки
  4. форсунки, образующие антипульсационные перегородки (всего 54 шт.)
  5. основные форсунки
  6. подвод воспламенительной смеси (4 форсунки, питаемые из отдельного коллектора)
  7. коллектор верхнего пояса завесы
  8. коллектор подвода горючего для охлаждения цилиндрической части КС
  9. коллектор среднего 26 и нижнего 27 поясов завесы
  10. главный коллектор подвода горючего к КС
  11. наружная силовая стенка КС
  12. коллектор отвода горючего из тракта охлаждения сопла
  13. внутренняя стенка КС
  14. коллектор подвода горючего для охлаждения выходной части сопла
  15. сопло
  16. горючее движется к срезу сопла по четным (условно) и возвращается по нечетным каналам
  17. подвод горючго для охлаждения выходной части сопла
  18. подвод горючго от насоса
  19. подвод горючго к среднему и нижнесу поясам завесы
  20. перегородка в каналах
  21. цилиндрическая часть КС
  22. смесительная головка
  23. центральная форсунка
  24. газовая полость смесительной головки
  25. перфорированное заднее днище смесительной головки
  26. средний пояс завесы
  27. нижний пояс завесы

Корпус камеры состоит из камеры сгорания и сопла. Корпус камеры включает в себя наружнюю силовую оболочку 11 и внутреннюю огневую стенку 13 с фрезерованными каналами, образующими тракт наружного регенеративного охлаждения камеры, имеющий три входа охладителя. Первый вход сообщен с трактом охлаждения критического сечения сопла, второй вход сообщен с трактом охлаждения выходной части сопла, а третий - с трактом охлаждения камеры сгорания. При этом первый выход сообщен с третьим входом, а первый вход, второй вход и подвод к двум нижним поясам щелевых завес объединены общим патрубком, разветвленным и размещенным снаружи камеры.

Внутреннее охлаждение обеспечивается тремя поясами щелевых завес в докритической части камеры сгорания. Через них на стенку подается около 2% горючего в виде пленок, испаряющихся и защищающих ее от тепловых потоков, которые в критическом сечении сопла достигают величин порядка 50 МВт/м 2 .

Cредства воспламенения выполнены из четырех равнорасположенных по окружности струйных форсунок 6, установленных за передним (огневым) днищем 3 в силовом корпусе камеры 11. Оси расходных отверстий струйных форсунок расположены под острым углом к выходу из силового корпуса и отклонены по кругу в поперечной плоскости от продольной оси силового корпуса в одинаковом направлении, причем ось расходного отверстия каждой струйной форсунки является скрещивающейся по отношению к осям расходных отверстий соседних с ней форсунок. Форсунки гидравлически объединены общим коллектором.

Все форсунки - двухкомпонентные с осевым подводом окислительного газа и тангенциальным подводом горючего. Форсунки, расположенные около огневой (внутренней) стенки камеры, выполнены с увеличенным гидросопротивлением по линии горючего по сравнению с другими форсунками за счет уменьшения диаметров отверстий подвода горючего, т.е. обеспечивающими уменьшенный расход горючего по сравнению с другими форсунками.

Для подавления пульсаций давления начальная зона смесеобразования и горения, в которой, как правило, зарождаются высокочастотные колебания, разделена на семь примерно одинаковых объемов с помощью антипульсационных перегородок, состоящих из выступающих за огневое днище форсунок, которые неплотно прилегают друг к другу по своим цилиндрическим образующим. Благодаря этому резко повышаются собственные частоты колебаний в объемах между перегородками, смещаясь далеко от резонансных частот конструкции камеры сгорания. Кроме того, выступающие форсунки растягивают зону горения, что также уменьшает возможность возникновения высокочастотных явлений. Зазоры между неплотно прилегающими друг к другу выступающими форсунками оказывают дополнительное демпфирующее влияние.

Выступающая за огневое днище часть форсунки охлаждается горючим, проходящим по спиральным каналам (шнековому завихрителю) 6 внутренней втулки.

Остальные форсунки заглублены в огневое днище (их выходные полости 4 выходят в конические расточки 5 в огневом днище 7) и выполнены с различным гидросопротивлением при подводе горючего с разделением по массовому расходу горючего на три группы с возможностью обеспечения разницы расходов горючего между каждой группой от 3% до 10% на номинальном режиме. При этом форсунки (кроме расположенных около огневой стенки камеры) закреплены в огневом днище и среднем днище так, чтобы между собой соседствовали форсунки из различных групп путем циклического последовательного спирального повторения расположения форсунок с первой до последней группы.
Введение форсунок с разным расходом необходимо для того, чтобы снизить эффекты высокочастотных колебаний на рабочих режимах двигателя.




Рис.6.2 Расположение форсунок на смесительной головке (изображения увеличиваются) ,

Каждая из четырех камер снабжена узлом качания. Сила тяги передается от камеры на силовую раму через карданный подвес. Подвод сработавшего на турбине генераторного газа в КС осуществляется через 12-слойный составной сильфон, размещенный внутри карданного подвеса. Сильфон бронирован специальными кольцами и охлаждается небольшим количеством холодного кислорода, протекающего между внутренней поверхностью сильфона и тонкой внутренней стенкой.


Рис.8. Схема узла качания
Узел качания состоит из опорных колец 9 и 10, которые соответственно герметично соединены с камерой сгорания и газоводом (выходом из турбины), в которых находятся расходные элементы наружного проточного охлаждения 11 и 12, показанные также на виде А . Сильфон 13 расположен внутри карданного кольца 14. Карданное кольцо 14 через шарниры 15, образующие две поворотные оси, соединено силовыми кронштейнами 16 и 17 с опорными кольцами 9 и 10.

Внутри сильфона 13 имеются две оболочки 18 и 19, каждая из которых представляет собой тело вращения и консольно прикреплена соответственно к одному из упомянутых опорных колец, причем свободный конец оболочки 18 выполнен в виде ниппеля со сферическим концом 20 и установлен с зазором а в оболочке 19. Центр сферы ниппеля со сферическим концом 20 расположен на оси качания камеры. Величина указанного зазора выбрана такой, чтобы обеспечить расход охлаждающего рабочего тела (окислителя), необходимый для надежного охлаждения сильфона 13.

Сильфон 13 выполнен многослойным и снабжен защитными кольцами 21, вставленными между гофрами 22 сильфона 13. Снаружи защитных колец 21 установлен плотно прилегающий к ним кожух 23, выполненный из слоев цилиндрических спиралей 24, соединенных концами с опорными кольцами 9 и 10 сильфонного узла. Смежные слои спиралей прилегают друг к другу, а их витки навиты в противоположных направлениях.

Установка металлического силового кожуха в виде металлической цилиндрической спирали снаружи защитных колец 21 сильфона 13 повышает его прочностные свойства и в то же время ограничивает самопроизвольный изгиб сильфона 13 при повороте камеры двигателя на сравнительно большие углы (10-12°), тем самым повышая его устойчивость.

Турбонасосный агрегат выполнен по одновальной схеме и состоит из осевой одноступенчатой реактивной турбины, одноступенчатого шнекоцентробежного насоса окислителя и двухступенчатого шнекоцентробежного насоса горючего (вторая ступень используется для подачи части горючего в газогенераторы).

Таблица 3. ТНА
Параметр Значение Единицы
окислитель горючее
Давление на выходе из насоса 60.2 50.6 МПа
Расход компонента через насос 1792 732 кг/с
Диаметр импеллера 409 405 мм
К.п.д. насоса 0.74 0.74
Мощность на валу 175 600 77 760 л.с.
129.2 57.2 МВт
Скорость вращения вала 13 850 мин -1
Мощность турбины 257 360 л.с.
189.3 МВт
Давление на входе в турбину 50.9 МПа
Количество ступеней турбины 1
Степень понижения давления на турбине 1.94
Температура на входе в турбину 772 К
К.п.д. турбины 0.79

На основном валу с турбиной находится насос окислителя, соосно с которым на другом валу расположены две ступени насоса горючего. Валы насосов окислителя и горючего соединены зубчатой рессорой для разгрузки вала от температурных деформаций, возникающих вследствии большой разницы температур рабрчих тел насосов, а также для предотвращения замерзания горючго.


Рис.10. Вал с турбиной, шнекоцентробежным колесом насоса окислителя,
подшипниками и импеллерными уплотнениями

Для защиты радиально-упорных подшипников валов от чрезмерных нагрузок разработаны эффективные авторазгрузочные устройства.

В двигателе замкнутой окислительной схемы особое значение имеет защита агрегатов кислородных трактов ТНА от возгорания при воздействии случайных инициаторов возгорания. Из-за исключительно высокого давления в тракте двигателей 11Д520 и 11Д521, а также высоких механических нагрузок, характерных для мощного двигателя, проблема защиты от вогорания при их создании была особенно острой.

Для предотвращения возгорания из-за поломок элементов конструкции или трения вращающихся деталей о неподвижные (вследствие выборки зазоров от деформаций или наклепа на сопрягаемых поверхностях от вибрации) зазор между лопатками соплового аппарата и ротора сделан относительно большим, а кромок лопаток - относительно толстыми.

Чтобы исключить возгорание и разрушение деталей газового тракта турбины, в конструкции применены никелевые сплавы, включая жаропрочные для горячих газовых магистралей. Статор и выхлопной тракт турбины принудительно охлаждаются холодным кислородом. В местах малых радиальных или торцевых зазоров используются разного рода теплозащитные покрытия (никелевые для лопаток ротора и статора, металлокерамического для ротора), а также серебряные или бронзовые элементы, исключающие возгорание даже при возможном касании вращающихся и неподвижных деталей турбонасосного агрегата.

Для уменьшения размеров и массы посторонних частиц, могущих привести к возгоранию в газовом тракте турбины, на входе в двигатель был поставлен фильтр с ячейкой 0.16х0.16 мм.

Высокое давление жидкого кислорода и, как следствие, повышенная орпсность возгорания обусловили конструктивные особенности насоса окислителя.

Так, вместо плавающих уплотнительных колец на буртах крыльчатки (обычно используемых на менее мощных ТНА) применены неподвижные щелевые уплотнения с серебряной накладкой, поскольку процесс "всплывания" колец сопровождается трением в местах контакта крыльчатки с корпусом и может привести к возгоранию насоса.

Шнек, крыльчатка и торовый отвод нуждаются в особенно тщательном профилировании, а ротор в целом - в особых мерах по обеспечению динамической сбалансированности в процессе работы. В противонм случае вследствие больших пульсаций и вибраций происходят разрушения трубопроводов, возгорания в стыках вследствие взаимного перемещения деталей, трения и наклепа.

Для предотвращения возгорания из-за поломок элементов конструкции (шнека, крыльчатки и лопаток направляющего аппарата) в условиях динамического нагружения с последующим возгоранием из-за затирания обломков использованы такие средства, как повышение конструктивного совершенства и прочности за счет геометрии, материалов и чистоты отработки, а также введение новых технологий: изостатическое прессирования литых заготовок, применение гранульной технологии и другие виды.

Бустерный насос окислителя состоит из высоконапорного шнека и двухступенчатой газовой турбины, привод которой осуществляется окислительным газом, отбираемом после основной турбины с последующим перепуском его на вход в основной насос.


Рис.11а. Упрощенная схема бустерного насосного агрегата окислителя
(изображение увеличивается).
Составной корпус, состоящий из соединенных фланцевым соединением корпусов 1 и 2, имеет закрепленную на силовых ребрах 3 втулку 4, внутренняя полость которой закрыта обтекателем 5. Внутри втулки 4 размещен шарикоподшипник 6, посаженный на рабочем колесе насоса, выполненным в виде шнека 7. Обтекателем 5 поджат вкладыш 8, установленный во втулке 4. Во вкладыше 8 имеются отверстия 9, сообщающие полость вкладыша 8 с каналом 10 высокого давления.

Корпус 2 содержит обтекатель 11, закрепленный в нем с помощью спрямляющих лопастей 12. В этом обтекателе установлен шарикоподшипник 13, закрепленный с помощью гайки 14 на шнеке 7. Шнек имеет лопасти 15. По этим лопастям шнек вставлен в рабочее колесо турбины 16 (которая фактически состоит из двух ступеней, а не из одной, как изображено на упрощенной схеме) и сварен с ним, т.е. рабочее колесо турбины закреплено на перефирийной части рабочего колеса насоса.

Рабочее колесо турбины имеет профилированные лопатки 17, межлопаточный пространства которых сообщены соплами в сопловом аппарате с входным коллектором. Подвод продуктов сгорания с избытком кислорода производится через входной патрубок 18. Выходная полость турбины, выполненная в корпусе 2 в виде кольцевой цилиндрической полости, сообщается каналами 19 с коническим кольцевым патрубком 20, который отверстиями 21 сообщается с цилиндрическим выходом 22.

При работе БНАО на вход насоса подается жидкий кислород (показано стрелкой), а продукты сгорания с избытком кислорода, отбираемые из газовода после турбины основного ТНА (см. ПГС на рис. 2), подаются на вход турбины (показано стрелкой). Продукты сгорания далее попадают на профилированные лопатки 17 турбины, обеспечивая подачу жидкого кислорода шнеком 7. За турбиной продукты сгорания через отверстия 19 попадают в полость патрубка 20, а затем через отверстия 21 на выход насоса, где происходит их смешивание с жидким кислородом и конденсация. Для решения проблемы возникновения низкочастотных пульсации при конденсации газа применено дроблении потока, сбрасывающего газ.

Разгрузка шнека 7 от действий осевых сил обеспечивается подачей жидкого кислорода высокого давления (см. рис. 2.2) через канал высокого давления 10 в полость высокого давления авторазгрузочного устройства. В месте малого зазора между рабочим колесом и корпусом в полости высокого давления авторазгрузочного устройства используется серебряная накладка, предтаращающая возгорание при возможном касании.

В магистрали подвода продуктов сгорания к турбине БНАО установлен впервые разработанный клапан "горячего газа" (45 на рис.2.1), работающий в условиях кислородного генераторного газа с высокой температурой и при высоком давлении.

Бустерный насос горючего состоит из высоконапорного шнека и одноступенчатой гидравлической турбины, работающей на керосине, отбираемом после основного насоса.

Конструктивно бустерный насос горючего аналогичен бустерному насосу окислителя со следующими отличиями:

  • одноступенчатая гидротурбина работает на горючем, отбираемым с выхода насоса горючего основного ТНА;
  • отвод горючего высокого давления для разгрузки шнека от действий осевых производится из входного коллектора гитротурбины БНАГ.


Рис.12. Бустерный насосный агрегат горючего

Рис.13. Газогенератор

Однозонный газогенератор, вырабатывающий газ с избытком окислителя для привода турбины, состоит из корпуса паяно-сварной конструкции со сферообразной внешней оболочкой и жестко связанным с ней выходным патрубоком, цилиндрической огневой камерой диаметром 300 мм и смесительной головки, оснащеной двухкомпонентными и двухкаскадными по окислителю форсунками, конструкция которых выполнена с зоной горения и зоной балластировки газа внутри форсунок. Фактически каждая форсунка образует вместе с каналом толстостенного огневого днища, в котором она расположена, индивидуальный двухзонный газогенератор. В результате обеспечивается равномерность температурного поля по поперечному сечению общего газового потока, формируемого такими форсунками, при высокой расходонапряженности.



Рис.14а. Схема газогенератора ,:
1 - сферообразная силовая оболочка; 2 - выходной патрубок; 3 - крышка; 4 - втулка; 5 - огневое днище; 6 - сквозные камеры в огневом днище; 7 - полость окислителя; 8 - проставка (внешняя стенка огневой камеры); 9 - кольцевая полость; 10 - оболочка (внутренняя стенка) огневой камеры; 11 - огневая камера; 12 - смесительный модуль (форсунка); 13 - корпус смесительного модуля; 14 - канал горючего; 15 - кольцевой канал окислителя; 16 - смесительная камера; 17 - патрубок подвода горючего; 18 - полость горючего; 19 - патрубок подвода окислителя; 20 - окна во втулке 4; 21 - тангенциальные отверстия подвода окислителя; 22 - пазы на наружной поверхности корпуса форсунки; 23 - калиброванные каналы подвода горючего; 25 - тангенциальные отверстия подвода горючего; 26 - конические расточки; 27 - полость охлаждения; 28 - каналы, образующие полость охлаждения; 29 - отверстия подвода окислителя в полость охлаждения; 30 - кольцевая щель выхода окислителя из полости охлаждения.

При работе газогенератора горючее из патрубка 17 заполняет полость 18 и подается через калиброванные каналы 23 и тангенциальные отверстия 25 в каналы 14 и далее в смесительные камеры 16. Окислитель через патрубок 19 подвается в кольцевую полость 9, через окна 20 заполняет полость 7. Часть окислителя через тангенциальные отвертия 21 попадает в смесительную камеру 16, где, смешиваясь с горючим, вызывает его возгорание. Через пазы 22 окислитель также подается в камеру 6, обеспечивая смешивание высокотемпературных продуктов сгорания. Далее в огневой камере 11 происходит охлаждение высокотемпературных продуктов сгорания с одновременным испарением жидкого и нагревом газообразного окислителя. На выходе из газогенератора к продуктам газогенерации подмешивается окислитель, подаваемый через кольцевую щель 30.


Рис.14б. ТНА с газогенераторами

Газогенератор обеспечивает на выходе окислительный газ в широком диапазоне температур (от 190 до 600°С), что позволяет регулировать тягу двигателя от 30 до 105% номинала.

Соединение корпуса и смесительной головки осуществляется при помощи разъемного фланца. Для обеспечения герметичности используется уплотнение с металлическими прокладками.

Для обеспечения приемлемого уровеня температурных напряжений в несущих корпусных деталях, газоводы между газогенераторами, турбиной и камерами охлаждаются кислородом.

Для предотвращения возгорания в газоводах, узлах качания смесительной головки камеры, клапане окислителя установлены повышенные (по сравнению с менее мощными двигателями) требования чистоты газовых трактов и недопущение наличия органических веществ.

Ампула содержит корпус 1 с входным 2 и выходным 3 патрубками мембранных узлов 4 и 5, установленных внутри корпуса 1, и средство для заправки корпуса пусковым горючим 6. Каждый мембранный узел 4, 5 содержит поршень 7, который может быть выполнен за одно целое с мембраной 8 или в котором мембрана 8 герметично соединена с его наружной поверхностью. Поршень 7 установлен в направляющей 9 корпуса по скользящей посадке.

Периферийный участок мембраны 8 герметично заварен с корпусом 1 под направляющей 9. Поршень 7 подсоединен к хвостовику 10, который может быть выполнен цилиндрическим или какой-либо иной формы и размещен во втулке 11. Втулка 11 на кронштейнах 12 прикреплена к корпусу 1 ампулы. Втулка 11 имеет пружинный фиксатор 13, например выполненный в виде пружинящего кольца, а хвостовик 10 выполнен с кольцевой канавкой 14.

При срабатывании мембранного узла пружинный фиксатор 13 ограничивает перемещение хвостовика 10. Хвостовик 10 выполнен с отверстиями 15 для стравливания газа из застойной зоны при заправке ампулы. Мембрана 8 со стороны входа 2 выполнена тонкой в форме кольцевой перемычки 16, разрываемой при взаимодействии с рабочей средой на диаметре D. Размер D несколько меньше диаметра поршня 7. В месте соединения мембраны 8 с поршнем 7 она выполнена с меньшей толщиной для того, чтобы исключить задиры при движении поршня 7 в направляющей 9 корпуса 1.

Рис.16. Схема ампулы с пусковым горючим
(изображение увеличивается).

В конструкцию введено средство для заправки корпуса пусковым горючим 6, которое установлено в перегородке 17 корпуса 1 и состоит из двух заглушек - заправочной заглушки 18 и сливной заглушки 19, которые установлены соответственно в заправочном 20 и сливном 21 каналах. Каждая из заглушек имеет резьбовую пробку 22, герметизирующую пробку 23, уплотнительную прокладку 24 и гайку 25. Резьбовая пробка 22 имеет расходное отверстие 26.

Заправка ампулы пусковым горючим осуществляется следующим образом. На собранной ампуле до установки гаек 25 и герметизирующих пробок 23 не до конца ввертывают резьбовые пробки 22, таким образом, чтобы обеспечивалось открытие проходного сечения заправочного 20 и сливного 21 каналов через отверстие 26. Производят заправку пусковым топливом, подавая его через заправочный канал 20 во внутреннюю полость корпуса 1 между мембранными узлами 4 и 5, а затем через сливной канал на слив. После окончания заправки ампулы ввертывают до упора резьбовые пробки 22, после чего сливают пусковое горючее перед резьбовой пробкой 22 заправочной заглушки 18 и после резьбовой пробки 22 сливной заглушки 19. После этого устанавливают герметизирующие пробки 23, уплотнительные прокладки 24 и гайки 25. После этого ампула готова к установке на ракетный двигатель. Во внутренней полости ампулы в корпусе 1 между мембранами 8 образуется газовая подушка в результате сборки и заправки ампулы. Наличие газовой подушки способствует обеспечению надежности ампулы при хранении и эффективному движению с ускорением поршня 8 при подаче давления среды на вход ампулы.

Устройство работает следующим образом. При воздействии компонента высокого давления со стороны входа на мембранный узел 4 происходит деформация мембраны 8, а потом и разрушение по окружности D. При неравномерном разрушении мембраны 8, с появлением негерметичности, давление перед поршнем 7 не падает, благодаря работе дросселирующей щели, образованной направляющей корпуса 9 и поршнем 7, поршень 7 продолжает двигаться, а после полного разрушения мембраны 8 он разгоняется. Движение поршня 7 с ускорением обеспечивается в связи с наличием усилия от перепада давлений, действующих на площадь поверхности, определяемую диаметром D.

Длина "А", на которой поршень двигается с ускорением и зазор между поршнем 7 и направляющей 9 выбраны такими, чтобы обеспечить гарантированное срезание мембраны 8 по всему периметру, требуемую задержку раскрытия проходного сечения магистрали после среза мембраны 8, разгон поршня 7, необходимый для срабатывания пружинного фиксатора 13. Размеры перемычек мембран 8 определяется исхода из заданного давления, обеспечивающего разрушение перемычки.

Далее, перемещающийся хвостовик 10 вдоль по потоку фиксируется с помощью пружинного фиксатора 13, при этом гидравлические характеристики открытого мембранного узла 4 воспроизводятся с высокой точностью, так как в потоке компонента отсутствуют элементы конструкции с неопределенным положением.

После открытия мембранного узла 4 за счет возросшего давления пускового горючего аналогичным образом открывается мембранный узел 5.

В двигателях РД-170 и РД-171 применены разные варианты качания камер и органов управления отклонением ими.

Камеры двигателя РД-170 в составе блока А ракеты "Энергия" качаются в двух плоскостях: в радиальной плоскости, проходящей через продольную ось двигателя и ось камеры, и в перпендикулярной к ней тангенциальной плоскости. Такая схема управления более эффективна в структуре пакета ракеты "Энергия", но требует более мощных рулевых машин, которые преодолевают нагрузку, создаваемую набегающим аэродинамическим потоком на выступающую часть сопла камеры сгорания за параметр внешнего обвода блока при ее отклонении в радиальном направлении.

Камеры сгорания двигателя РД-171 первой ступени "Зенита" отклоняются при управлении только в тангенциальной плоскости качения. Сопла камер не выходят в обтекающий ступень аэродинамический поток и не испытывают его нагрузки. Рулевые машины существенно менее мощны. Эффективность управления такого варианта достаточна для ракеты "Зенит".

Остальные системы двигателей унифицированы.

На завершающем этапе отработки двигателей В.П. Глушко инициировал разработку более совершенной конструкции двигателя, которая по сравнению с двигателем РД-170 (РД-171) обеспечивала более высокую тягу (форсирование на 5 %) и в которой должны быть реализованы мероприятия по снижению динамической напряженности работы агрегатов подачи. Соответствующая конструкторская документация была разработана и двигатель, в конечном итоге, получил название РД-173.

До 1996 г. было изготовлено 28 двигателей, которые прошли разноплановую отработку. В двигателях РД-173 используется более совершенная конструкция агрегатов подачи, в первую очередь основного ТНА. Серьезной переделке подверглась система регулирования двигателя РД-170. В процессе отработки РД-173 было подтверждено, что запуск двигателя, его работа на всех предусматриваемых режимах характеризуется устойчивой работой всех агрегатов и систем с обеспечением требуемых характера запуска и точности поддержания параметров без задействования дросселей окислителя. Исключение из состава двигателя дросселей окислителя и соответственно двух приводов упростило его конструкцию, повысило надежность и снизило массу двигателя. Была внедрена конструкция сильфонов узла качания из никелевого сплава, что также повысило надежность двигателя.

Накопленный опыт настройки системы управления двигателем в процессе контрольно-технологических испытаний с использованием внешних обратных связей позволил в процессе отработки двигателя РД-173 перейти к существенно более простой системе управления, состоящей из двух цифровых приводов, управляющих непосредственно регулятором тяги и дросселем СОБ. Упрощение системы регулирования увеличило надежность двигателя, снизило его массу.

В двигателе РД-173 с учетом большой положительной статистики работы газогенераторов смесительные головки выполнены приварными в отличие от фланцевого соединения в двигателях РД-170 (РД-171), где предусматривалась возможность оперативной замены головки после контрольно-технологического испытания. Это, а также другие решения, полученные при отработке двигателя РД-173, были использованы при разработке двигателя РД-180.

Заказы на изготовление двигателей РД-171 прекратились в 1995 г. Вместе с тем НПО Энергомаш продолжало изготавливать более совершенную модификацию двигателей РД-170 (РД-171) - двигатель РД-173. С 1995 г. НПО Энергомаш поставляло двигатели РД-171 для программы «Морской старт», которые дорабатывались из двигателей РД-170, ранее изготовленных для первых ступеней РН «Энергия». Данные двигатели создали задел для реализации программы до 2004 г. Для дальнейшего развития программы необходимым стало возобновление производства двигателей в НПО Энергомаш. Учитывая накопленный опыт отработки двигателей РД-173 и РД-180, в которых внедрены решения, направленные на повышение надежности и обеспечение форсирования на 5%, НПО Энергомаш предложило изготавливать двигатели РД-173 для программы «Морской старт». Данное предложение было поддержано головным разработчиком РН «Зенит» ГКБ «Южное» и одобрено заказчиком РН. Двигатель получил обозначение РД-171М. Сертификация двигателя РД-171М завершена 5 июля 2004 г. На сертификационном двигателе проведено 8 испытаний продолжительностью 1093,6 сек, причем последнее испытание (сверх плана) – на режиме 105%. Первый товарный двигатель РД-171М поставлен в Украину 25 марта 2004г после проведения КТИ продолжительностью 140 сек.

В 2006 г. двигатель РД-171М сертифицирован для применения в составе РН "Зенит-М" при реализации государственных программ РФ.

Система технической диагностики разрабатывалась параллельно с созданием двигателя как средство оценки техническою состояния двигателя и прогноза его работоспособности. Кроме того, она использовалась для анализа отказов и дефектов, поскольку давала возможность более глубоко исследовать взаимоувязку параметров, их статистические характеристики.

Система представляет собой совокупность технических средств, методов диагностирования и объекта диагностирования, а также организационно-технических мероприятий для сбора, преобразования, хранения, анализа информации и принятия решения о состоянии двигателя. Система должна обеспечивать установление места и причин возникновения неисправностей.

Система технической диагностики имеет следующие подсистемы:

  • информационно-измерительная;
  • фукционного диагностирования;
  • тестового диагностирования как неразрушающего метода контроля состояния.

В ходе разработки системы диагностирования созданы:

  • методика контроля стабильности характеристик запуска, основного режима и режима конечной ступени. Методика предназначалась для оценки значений медленно меняющихся параметров и их скоростей, полученных при огневых испытаниях с учетом поля допустимых границ;
  • методика допускового контроля параметров на основном режиме и режиме конечной ступени; предназначалась она для оценки соответствия параметров двигателя, измеренных при огневых испытаниях, расчетным значениям, полученным с использованием математических моделей и модельных характеристик агрегатов по их автономным испытаниям, что определяется нахождением параметров в поле допусков;
  • методика контурной увязки медленно меняющихся параметров; предназначалась для оценки функционирования двигателя в целом и его контуров на стационарных режимах путем сравнения измеренных и расчетных значений медленно меняющихся параметров в характерных точках;
  • методика оценки устойчивости и определения виброакустических характеристик; предназначалась для контроля уровня пульсации и вибраций на соответствие статистическим допускам и оценки устойчивости камеры сгорания и газогенератора, с анализом физической природы спектров и определением декрементов затухания колебаний;
  • методика оценки величины выработанного ресурса сборочных единиц; основана она на теории многоцикловой усталости материалов и учитывает динамические нагрузки, вызываемые пульсациями и вибрациями; оценивалось интегральное значение усталостной повреждаемости при контрольно-технологических испытаниях, прогнозировалось ее значение при эксплуатации и их сумма сравнивалась с предельным значением, определяемым по результатам многоресурсовых испытаний;
  • методика параметрического контроля - использовалась при диагностировании на стационарных режимах в целях локализации неисправностей; анализ основан на оценках функциональных характеристик агрегатов;
  • комплекс неразрушающих методов контроля.

В серийном производстве каждый двигатель после изготовления и полного цикла контроля проходит автономные контрольные технологические испытания, которые проводятся на огневом стенде завода-изготовителя с запуском двигателя по полной полетной программе или несколько ускоренной. После огневых стендовых испытаний двигатель может претерпевать переборку. Это значит, что для того, чтобы убедиться в сохранении качества конструкции после огневых испытаний, производится частичная разборка отдельных агрегатов.

  1. Губанов Б.И. Триумф и трагедия "Энергии"
  2. George P. Sutton. Rocket Propulsion Elements, 7 th edition
  3. Каторгин Б. И. Перспективы создания мощных жидкостных ракетных двигателей
  4. George P. Sutton "History of Liquid Propellant Rocket Engines"
  5. Проспект НПО "Энергомаш"
  6. Описание изобретения к патенту Российской Федерации RU 2159351. Газогенератор (US Patent 6244040).
  7. Описание изобретения к патенту Российской Федерации RU 2159349. Модуль-газогенератор (US Patent 6212878).
  8. Описание изобретения к патенту Российской Федерации RU 2158841. Камера ЖРД и ее корпус (US Patent 6244041).
  9. Добровольский М.В. Жидкостные ракетные двигатели. - М.: МГТУ, 2005.
  10. Описание изобретения к патенту Российской Федерации RU 2159352. Узел качания Камеры ЖРД с дожиганием.
  11. Описание изобретения к патенту Российской Федерации RU 2158839. ЖРД с дожиганием турбогаза (US Patent 6226980
  12. НПО «Энергомаш» имени академика В.П.Глушко. Путь в ракетной технике. Под ред. Б.И.Каторгина. М., Машиностроение-Полет, 2004.

Сборочный цех ракетных двигателей ОАО "Кузнецов" / Фото: ТАСС, Сергей Фадеичев

Первые два из 60 ракетных двигателей РД-181 по контракту на 1 миллиард долларов поставлены российской стороной американской компании Orbital Sciences Corporation, сообщили РИА Новости в РКК "Энергия".

"Шестнадцатого июля первые два двигателя были доставлены в США, дата поставки следующей партии пока не сообщается", — сказали в пресс-службе.

Ранее ТАСС сообщило, что США потребуется до десяти лет и около 3 млрд долл., чтобы создать собственный ракетный двигатель, аналогичный российским РД-181. Об этом заявил президент РКК "Энергия" Владимир Солнцев.


"Если говорить о создании двигателя в Америке, то любая держава в состоянии создать, только вопрос: зачем? По моих оценкам, на это потребуется около 3 млрд долл., а может, и больше, и семь-десять лет", - сказал В. Солнцев. Он подчеркнул, что при этом на выходе результат может быть неоднозначным, и не факт, что все получится. При этом, отметил глава корпорации, международную кооперацию никто "не отменял и не убивал".

Владимир Солнцев / Фото: www.rg.ru

Ранее В. Солнцев сообщил, что НПО "Энергомаш" планирует поставить американской компании Orbital Sciences 60 новых РД-181, на 20 из них уже подписан контракт. Сумма контракта - около 1 млрд долл., причем в эту сумму входит целый набор услуг. В. Солнцев участвовал в сделке от лица НПО "Энергомаш", поскольку остается исполнительным директором объединения.

Глава "Энергии" также пояснил, что "Энергомаш" и Объединенная ракетно-космическая корпорация получили все необходимые разрешения на сделку.

РД-181 будут использоваться на первой ступени ракеты Antares, производимой Orbital Sciences. Ранее эти ракеты комплектовались двигателями AJ-26, сделанными на основе советских НК-33.

Россия адаптировала двигатели РД-180 под американские нужды

Солнцев отметил, что российские специалисты адаптировали под пилотируемые пуски двигатели РД-180, поставляемые в США для ракет Atlas. "За последние два года мы выполнили контракт с United Launch Alliance на адаптацию двигателя РД-180 под пилотируемые программы Соединенных Штатов. И (ракета-носитель) Atlas, и компания Space X выиграли тендер, и мы выполнили этот контракт и адаптировали этот двигатель под пилотируемые пуски", - сказал он.

"Atlas-5 может сейчас обрести новую историю, новое лицо", - отметил В. Солнцев.

В закон о военных ассигнованиях США на 2015 финансовый год входит поправка сенатора-республиканца Джона Маккейна, устанавливающая запрет на дальнейшие закупки РД-180 для ракет. Atlas выводит на орбиту не только гражданские, но и военные спутники, и многие законодатели утверждают, что интересы национальной безопасности США оказались в зависимости от российских технологий.

При этом закон предусматривает выделение 220 млн долл. на разработку американского двигателя для замены РД-180. ВВС США, в ведении которых находятся космические запуски, предложено решить задачу в течение пяти лет. В Пентагоне, однако, открыто признают, что не знают, как использовать выделенные средства - создавать новый двигатель целесообразно только под определенную ракету-носитель.

Этим занимается сейчас корпорация United Launch Alliance, осуществляющая пуски Atlas. Американские военные полагают, что ей и следует продолжать эту работу .


Техническая справка


РД-180
- жидкостный ракетный двигатель закрытого цикла с дожиганием окислительного генераторного газа после турбины, оснащен двумя камерами сгорания и двумя соплами. Разработан и производился ОАО «НПО Энергомаш имени академика В. П. Глушко». Топливо - керосин, окислитель - жидкий кислород. Стоимость одного двигателя по состоянию на 2010 год составляет 9 млн долл.

РД-180 был создан в середине 90-х годов на основе двигателя РД-170. В 1996 году право на использование двигателя приобрела компания General Dynamics. Впервые был использован 24 мая 2000 года в качестве первой ступени ракеты-носителя «Атлас IIA-R» - модификации ракеты «Атлас IIA». Буква «R» в названии ракеты указывает на использование двигателя российского производства. В дальнейшем ракета была переименована в «Атлас III».

После первого запуска была проведена дополнительная работа по сертификации двигателя с целью его использования на универсальном ракетном модуле основной ступени ракеты «Атлас-5». РД-180, который использовался на испытательном стенде, был показан на 23-й встрече Большой восьмерки (июнь 1997 года, Денвер, США). Двигатель состоит из двух камер, турбонасосного агрегата, бустерного насосного агрегата горючего, бустерного насосного агрегата окислителя, газогенератора, блока управления автоматикой, блока баллонов, системы приводов автоматики, системы рулевых приводов, регулятора расхода горючего в газогенераторе, дросселя окислителя, дросселя горючего, пуско-отсечных клапанов окислителя и горючего, двух ампул с пусковым горючим, пускового бачка, рамы двигателя, донного экрана, датчиков системы аварийной защиты, теплообменника для подогрева гелия на наддув бака окислителя.

На сегодня все производство двигателя сосредоточено в России. Продажа осуществлялись совместным предприятием «Pratt & Whitney» и НПО «Энергомаш», называемым СП «РД-Амрос» (англ. RD AMROSS). Приобретение и монтаж производились United Launch Alliance. C мая 2014 года заключение новых контрактов временно прекращено по постановлению суда в связи иском конкурента - компании SpaceX, поставки двигателей по старым контрактам продолжаются.

Двигатель РД-180 на испытательном стенде в Космическом Центре Маршалла (США) / Фото: / ru.wikipedia.org

Тактико-технические показатели

Тип жидкостный ракетный двигатель
Топливо керосин
Окислитель
жидкий кислород
Камер сгорания 2
Применение
«Атлас III и Атлас V» (первая ступень)
Развитие РД-181
Массогабаритные характеристики
Полная масса,кг 5 950
Сухая масса, кг 5 480
Высота, мм
3 600
Диаметр, мм
3 200
Рабочие характеристики
Тяга, тс:

вакуум: 423.4

В США идет бодалово по поводу возврата себе статуса "великой космической державы" отказа от российских ракетных двигателей РД-180.

Многих напрягает, что вывод американских военных спутников зависит от доброй воли русских.

По этому поводу в штатах возник интересный дуализм:
ВВС США и ULA просят Конгресс разрешить поставки РД-180 в США, а сенатор Джон Маккейн - категорически запрещает Конгрессу разрешать.
В итоге все таки Конгресс снял запрет - видимо, пока ВВС США оказались убедительнее сбитого американского летчика, грозящего проголосовать против бюджета (из за РД-180) .
:)

При этом в распоряжение американских СМИ попал доклад специальной комиссии Пентагона под руководством генерал-майора ВВС США в отставке Говарда Митчелла (Howard Mitchell), в котором тот отметил, что без РД-180 космические запуски военных спутников после 2016 года будут сорваны. Перенос запусков с ракет Atlas V, использующих российские двигатели, на ракеты Delta IV (на них установлены жидкостные ракетные двигатели RS-68) все равно приведет к значительным задержкам и возможным потерям, которые могут составить $5 миллиардов.

А про астронавтов, которые могут не получить обратного билета с МКС забыли?
Тоже ведь летают советскими российскими "Союзами".

Справка:

РД-180 производится НПО Энергомаш имени академика В.П. Глушко с 1999 года.

Почему американцы не могут сделать РД-180?

P.P.S.

United Launch Alliance закупит еще 20 двигателей РД-180

Совместное предприятие Lockheed Martin Corp и Boeing Co - United Launch Alliance, заказало 20 дополнительных российских ракетных двигателей РД-180.
Представитель заказчика Джессика Рож уточнила, что поставки новой партии начнутся сразу же после того, как будет выполнен предыдущий заказ на 29 двигателей , - сообщает Reuters.
Российские двигатели будут использоваться на американских ракетах "Атлас-5" пока США не разработает и не сертифицирует собственный новый двигатель. РД-180 используются в первой ступени американских ракет.
Палата представителей конгресса США в декабре 2014 года в качестве антироссийской меры на события на Украине приняла поправку сенатора Джона Маккейна, которая предусматривает полный отказ США от ракетных двигателей РД-180 до 2019 года . Исключение делается для контракта, заключенного консорциумом Boeing и Lockheed Martin (ULA) с российским НПО "Энергомаш" до 2019 года . При этом сообщалось, что конгресс выделил 220 миллионов долларов на разработку новых американских двигателей.

220 млн. "резаной" - это явно недостаточно, как мы уже убедились выше.

Понравилось? Лайкни нас на Facebook