Принцип работы роторного двигателя, плюсы и минусы системы. Двигатель Ванкеля. Принцип работы РПД

Все они ставили роторные движки под капот своих автомобилей. А японские и по сей день пользуются ротором – правда, уже в современной, усовершенствованной модификации. В чем же успешность роторного двигателя Ванкеля?

Принцип работы роторно-поршневого двигателя

Роторный совершает те же четыре такта, что и его поршневой собрат: впуск, сжатие, рабочий такт, выпуск . Но работает ротор по-другому. Поршневой двигатель выполняет четыре такта в одном цилиндре. А роторный хоть и выполняет их в одной камере, но каждый из тактов проходит в её отдельной части. То есть, цикл будто выполняется в отдельном цилиндре, а поршень «бегает» от одного цилиндра к другому. При этом, в роторном моторе нет механизма газораспределения. В отличие от поршневого двигателя, всю работу выполняют впускные и выпускные окна, размещенные в боковых корпусах. Ротор вращается и регулирует работу окон: открывает и закрывает их.

Кстати, о роторе. Не нужно и говорить, что он является основным элементом мотора, именно ротор дал название самому двигателю. Что же это за деталь? Ротор имеет треугольную форму, он недвижимо скреплен с эксцентриковым валом и насажен на него не по центру. При вращении элемент описывает капсуловидную форму , а не круг, благодаря его расположению. Ротор передает мощность от мотора к коробке передач и сцеплению, проще говоря, выталкивает сгоревшее топливо и передает вращение на трансмиссию к колесам. Полость, в которой вращается ротор, сделана в форме капсулы.

Принцип работы роторно-поршневого двигателя состоит в следующем. При вращении ротор создает вокруг себя три, изолированные друг от друга, полости. Происходит это благодаря капсульной форме полости вокруг ротора и треугольной форме самого ротора. Первая полость – полость всасывания , в ней смешивается топливо с кислородом. Далее смесь перегоняется во вторую камеру движением ротора и там же сжимается. Здесь её воспламеняют две свечи, она расширяется и толкает поршень. Поступательным движением ротор прокручивается, открывается следующая полость, где выходят отработавшие газы и остатки топлива.

Недостатки и преимущества роторного двигателя

Как и любой другой ДВС, роторный движок имеет как плюсы, так и минусы. Сначала рассмотрим его преимущества перед другими движками.

1. Производительность роторного двигателя в несколько раз выше остальных. Пока в обычных ДВС за один оборот проходит один такт, то в роторном моторе – три (всасывание, сжатие, воспламенение). Причем, современные движки оборудованы сразу двумя или тремя роторами, поэтому 2-х роторный движок можно сравнить с 6-ти цилиндровым обычным ДВС, а 3-х роторный – с 12-тью цилиндрами.

2. Малое количество деталей . Простота конструкции мотора (ротор и статор) позволяют использовать меньшее количество деталей. Статистика гласит, что в ДВС на 1000 деталей больше, чем в роторном моторе.

3. Низкий уровень вибрации . Ротор вращается по кругу, не совершая возвратно-поступательных движений. Соответственно, вибрация практически не ощутима. Кроме того, роторных двигателей обычно два, поэтому они уравновешивают работу друг друга.

4. Высокие динамические характеристики . За один оборот двигатель совершает три такта. Поэтому даже на малых оборотах двигатель развивает высокую скорость.

5. Компактность и маленький вес. Из-за простоты конструкции и маленького количества деталей мотор обладает маленьким весом и размером.

Несмотря на множество плюсов, мотор имеет и несколько минусов, не позволяющих автокомпаниям массово использовать его на своих авто.

1. Склонность к перегреву. Во время горения рабочей смеси вырабатывается лучистая энергия, которая бесцельно покидает камеру сгорания и нагревает мотор. Это происходит из-за формы камеры, которая напоминает капсулу или линзу, то есть, имея маленький объем, она обладает большой рабочей поверхностью. Чтобы энергия не выходила, камера должна была иметь сферическую форму.

2. Регулярная замена масла. Ротор соединен с выходным валом эксцентриковым механизмом. Этот способ соединения вызывает дополнительное давление, что вкупе с высокой температурой нагревает двигатель. Именно поэтому нужно периодически отдавать машину на капремонт и заменять масло. Без замены масла двигатель выходит из строя.

3. Регулярная замена уплотнителей. На маленькой площади контакта ротора с валом образуется повышенное давление. Уплотнители изнашиваются, в камерах образуются утечки. Вследствие этого увеличивается токсичность выхлопа и падение КПД. Кстати, на новых моделях эту проблему решили, используя высоколегированную сталь.

4. Высокая цена. Для роторных двигателей детали должны производиться с высокой геометрической точностью. Поэтому в производстве роторных двигателей используют дорогостоящее оборудование и дорогие материалы. Вследствие этого цена на роторный мотор высокая при кажущейся простоте конструкции.

Применение роторных двигателей: от изобретения до наших дней


Разработкой роторного двигателя инженеры зан0имаются очень давно. Изобретатель паровой машины Джеймс Ватт положил начало мечте о двигателе роторного типа. В 1846 году инженеры уже определили форму камеры сгорания и основы работы роторного ДВС. Но двигатель так и оставался мечтой. Но в 1924 году молодой и талантливый Феликс Ванкель начал основательную практическую работу по созданию роторного двигателя. Двадцатидвухлетний инженер как раз окончил высшую школу и поступил в издательство технической литературы. Именно тогда Ванкель начал чертить проект собственного двигателя, опираясь на обширные теоретические знания из литературы. Создав собственную лабораторию, инженер начал получать патенты на изделия. В 1934 году Ванкель подал заявку на первый роторный двигатель.

Но судьба распорядилась иначе. Талантливого инженера отметила власть, и он начал работу на крупнейших автомобильных концернах фашистской Германии. Свои проекты ему пришлось отложить. После войны инженер сидел в тюрьме , как пособник нацистского режима, а его лабораторию вывезли французы. И только в 1951 году ученый восстановил имя, начав работать на фирму мотоциклов . Там он восстановил свою лабораторию и привлек к проекту роторного двигателя ещё одного ученого по имени Вальтер Фройде. Вместе они выпустили первый роторный мотор 1 февраля 1957 году. Изначально он работал на метаноле, но к июлю мотор перевели на бензин. В 50-е Германию начала оправляться от последствий войны, соответственно, богатели и автомобильные компании.


Компания NSU, в которой работали Ванкель и Фройде, готовилась массово выпускать автомобили на роторном двигателе. В 1960 году в Мюнхене показали NSU Spider с двигателем Ванкеля под капотом. А в 1968 году вышел NSU Ro-80, который повлиял на дальнейшее автомобилестроение. Автомобиль разгонялся до 180 км/ч, с места машина разгонялась до 100 км/ч за 12,8 с . Ro-80 стал автомобилем года, и многие концерны выкупали права на двигатель Ванкеля. Но из-за недостатков в конструкции двигателя и дороговизны производства, компании отказывались массово делать машины с роторным мотором. Но опытные образцы были.

Например, Mercedes-Benz, выпустивший в 1970 году автомобиль С111. Стильный оранжевый автомобиль с обтекаемым надежным кузовом разгонялся до 100 км/ч за 4,8 с. Но прожорливость автомобиля не дала компании массово производить С111.


Заинтересовались ротором и . Уже в 1972 году публике представили первый "Корвет" с двухсекционным роторным мотором. В 1973 появились Корветы с четырьмя секциями, но в 1974 году, из-за нехватки денег, Chevrolet отложили работу над роторными двигателями. Соседняя Франция тоже взяла на вооружение двигатели Ванкеля. В 1974 году компания Citroen выпустила на рынок Citroen GS Birotor. Под капотом был двухсекционный двигатель Ванкеля. Но машина не пользовалась популярностью. За два года французская компания продала всего 874 машины. В 1977 году Ситроен отозвал роторные авто с целью их ликвидации, но вполне вероятно, что 200 из них смогли уцелеть.


В СССР тоже пробовали применять двигатель Ванкеля. Лицензию на заводах ВАЗ купить не могли, поэтому скопировали односекционный роторный мотор с NSU Ro-80. На его основе в 1976 году собрали двигатель ВАЗ-311. Доработка длилась 6 лет. Первым серийным ВАЗом с ротором под капотом был 21018. Но модель с треском провалилась. Все 50 опытных образцов сломались. В 1983 году в СССР появились двухсекционные роторные модели. Оснащенные таким мотором «Жигули» и «Волги» с легкостью догоняли иномарки. Но потом конструкторское бюро отвлеклось от автомобилестроения и безрезультатно пыталось применить роторный движок в авиации. Привело это к тому, что развивающаяся отрасль остановилась на модели ВАЗ-415 в 1995 году.


До 2012 года серийно выпускалась модель Mazda RX-8 , с усовершенствованным двигателем Ванкеля. Вообще, японцы единственные, кто серийно производил роторные машины с 1967 года. В 70-х годах Mazda представила бренд RX, который обозначает использование роторных моторов. Японцы ставили ротор на любое авто, включая пикапы и автобусы. Может быть, поэтому RX-8 имеет отличные технические и экологические характеристики, что было так несвойственно первым автомобилям с двигателем Ванкеля.

Подписывайтесь на наши ленты в

Паровые машины, как и традиционные ДВС отличаются общим недостатком - возвратно-поступательные движения поршня должны преобразовываться во вращательные движения колес. Это и является причиной низкого КПД, высокого износа основных элементов.

Многие инженеры пытались решить эту проблему, придумав двигатель внутреннего сгорания, все детали которого бы только вращались. Однако изобрести такой агрегат смог механик-самоучка, не окончивший ни высшего, ни даже средне-специального учебного заведения.

Немного истории

В 1957 году малоизвестный механик-изобретатель Феликс Ванкель и ведущий инженер NSU Вальтер Фреде стали первыми, кто решил установить роторно-поршневой мотор на автомобиль. «Подопытным» стал на NSU Prinz. Первоначальная конструкция была далекой от совершенства. К примеру, свечи приходилось менять практически после полной разборки агрегата. К тому же, надежность мотора оставалась под сомнением, а про экономичность можно было не упоминать.

После множества испытаний концерн занялся выпуском машин с традиционным ДВС. Однако первый роторно-поршневой DKM-54 мог продемонстрировать великий потенциал.

Именно так оригинальная разновидность ДВС получил свой шанс на внедрение в производство авто. В дальнейшем он постоянно дорабатывался, однако перспективы роторно-поршневого мотора уже тогда были очевидны. РПД входит в классификацию роторных моторов как один из 5 представителей линейки.

К 80-м годам 20 века роторные исследовались лишь японской компанией Mazda. Еще к этому мотору проявлял внимание ВАЗ. В СССР бензин стоил достаточно дешево, а такой агрегат имел достаточно большую мощность. Однако к 2004 году производство машин с таким двигателем прекратилось. Япония стала единственной страной, в которой продолжается разработка роторного двигателя.

Есть множество разновидностей роторных агрегатов. Единственное их отличие - поверхность корпуса и число выполненных на роторе граней. Различные компоновки таких моторов применяются в авто- и судостроении.


Достоинства

Двигатель Ванкеля с момента создания имел множество выгодных преимуществ перед поршневыми моторами. Агрегат постоянно дорабатывался,что позволило повысить его экономичность и производительность.

Среди преимуществ»Ванкеля» выступают:

  1. Небольшие габариты и вес. «Ванкель» практически в 2 раза меньшепоршневого ДВС, что положительно сказывается на управляемости машины, способствует оптимальному монтажукоробки передач, позволяет сделать салон намного просторнее.
  2. В сравнении с двухтактным мотором, двигатель Ванкеля имеет гораздо меньше деталей. Это более выгодно с точки зрения ремонта.
  3. Вдвое большая мощность, чем у стандартных ДВС.
  4. Большая плавность работы - отсутствие поступательно-возвратных движений благоприятно сказывается на комфорте езды.
  5. Возможность заправки низкооктановым бензином.

Все элементы мотора вращаются в одну сторону. Это улучшает внутренний баланс агрегата и снижает вибрации. «Ванкель» выдает мощность равномерно и плавно. За время пока ротор оборачивается 1 раз, выходной вал совершает 3 оборота. Каждое сгорание осуществляется за 90 фазу вращение ротора.

Это говорит о том, что с 1 ротором способен выдавать мощностьза ¾ каждого поворота выходного вала. Двигатель с 1 цилиндром может выдавать мощность лишь за ¼ каждого витка выходного вала.

Недостатки

К недостаткам двигателя относятся непривычность для владельцев и механиков. Такой агрегат требует изменить многие привычки. К примеру, тормозить РПД не получится, а штурм подъемов «внатяг» обречен на неудачу. Компактный мотор обладает малой инерцией, чего не скажешь о массивных поршневых ДВС. При частыхзапусках-выключениях «забрасываются» свечи.Звук мотора некоторые автолюбители также относят к недостаткам.

Более серьезными являются органические изъяны роторно-поршневого агрегата. Во-первых, он обладает увеличенным расходом горючего. Это легко объяснить неоптимальной формой камеры, теряющей тепло через стенки. К тому же, мотор «съедает» достаточно много масла. Срок эксплуатации Ванкеля ниже, чем у стандартного ДВС -роторные уплотнениярегулярно изнашиваются.

Значительная роль отведена жесткости внешней характеристики роторно-поршневого мотора. Для управления машиной с таким двигателем требуется достаточно часто манипулировать рычагом коробки передач. Это объясняется тем, что необходим короткий передаточный ряд и увеличенное количество передач.

Идеальным вариантом является монтаж вариатора. Однако на спорткарах автоматы не приживаются, а для авто семейного типа требуется больше экономичности.

Недостатки РПД схожи с недостатками двухтактных поршневых агрегатов. Интересно, что вылечить это можно одними и теми же способами. Увеличенное потребление топлива сбивается непосредственным впрыском, нехватка эластичности - установкой изменяемых фаз. Это повышает экономичность и управляемость. Также для повышения эластичности меняется конфигурация трубопроводов. Такие изменения и были выполнены на моторе Mazda RX-8.

Как работает

Работает двигатель Ванкеляпо принципу, который достаточно просто объяснить даже несведущему в механике человеку. Агрегат обладает минимумом деталей, что позволяет быстро понять, какие системы задействуются в определенные промежутки времени.

Поршень двигателя в РПД заменяется ротором с 3 гранями, который передает силу давления сгораемых газов на вал эксцентрика.

Статор обладает эпитрохоидальной конфигурацией внутренних поверхностей. Он отличается высокой износостойкостью, поскольку имеет специальное покрытие. В вершинах ротора находятсяуплотнения, а на поверхности статораимеются выемки - они являются своеобразными камерами, в которых происходит сгорание. Вал вращается на специальных подшипниках. Они помещены на корпус. Также валоснащенэксцентриком - на нем и вращается ротор.

Шестерня вмонтирована в корпус. Она сцеплена с шестерней ротора. Взаимное действие этих шестерен создает движение ротора. Это позволяет образовать 3 камеры, которые постоянно изменяют свой объем.

Отношение передач шестерен равно 2:3, что обеспечивает один оборот вала за поворот ротора на 120 градусов. Когда ротор совершает полный оборот,все камерывыполняют четырехтактный цикл. Сгораемые газы действуют на эксцентрик вала через ротор - так возникает крутящий момент.

Между ротором и статором имеется 3 камеры. Впуск происходит, когда одна из вершин ротора начинает пересекать впускное отверстие для впрыска топлива. Объем камеры увеличивается, что заставляет смесь ее заполнить. Следующая вершина закрывает окно. Как и поршень двигателя традиционного исполнения, ротор сдавливает рабочую смесь перед воспламенением.

Она сжимается, при наибольшем сжатии в камере возникает искра. В результате осуществляется рабочий ход. После выпускное окно под давлением отработавших газов открывается, и они покидают камеру.

При одном обороте ротора двигатель совершает 3 цикла - это делает ненужным применение уравновешивающих устройств.

В рабочем процессе есть слабые звенья. Первое - повышенная нагрузка на уплотнения, а второе - избыток динамического перекрытия фаз.Не является оптимальной и конфигурация камеры сгорания. Однако есть и положительный момент - если повышать обороты, скорость распространения факела пламени увеличивается быстрее, чем перетекает топливная смесь.

Это позволяет применять для РПД бензин с пониженным октановым числом. Принцип работы Ванкеля достаточно прост, что в свое время привлекло к изобретению внимание многих производителей авто.

Не каждый автолюбитель знает, что Ванкель является одним из 5 подтипов в классификации роторных моторов.

Компактность, оборотистость, высокая производительность - не этого ли добиваются практически все производители мотоциклов? Однозначно, это так. Однако роторный мотор в мотомире таки не прижился. Все ставки делаются на классические поршневые двигатели.

Однако в истории производства мотоциклов существовало несколько исключений. К примеру, в 1974 году Hercules выпускает массовую серию Wankel, которые оборудованы двигателем KC-27. Это были роторные агрегаты, которые оснащались воздушным охлаждением. Двигатель имел объем294 куб. см. Мощность агрегатов составляла 25л.с. Для смазки агрегата, масло нужно было самостоятельно заливать в топливный бак.

В начале1980 роторный мотор использовали для оснащения мотоциклов Norton. Несмотря на то, что опытные прототипы таких двигателей появились еще в 1970-х.Инженеры Norton успешно внедрили РПД в спорт. К концу 80-х им не было равных.

Сегодня компания производит 588-кубовую модельдвумя роторами NRV588. Также инженерами Norton ведется разработка 700сс версии, которая называется NRV700. Она представляет собой мощный спортбайк, оснащенный инжекторным 170-сильным двигателем Ванкеля.

Как видно, эпоха роторных моторов еще не наступила. Поршневые системы так и остались лидирующими в сфере авто- и мотостроения. Обладатели байков с роторными двигателями могут образовать лишь небольшой круг фанатов Ванкеля. Возобновившийся интерес к «Ванкелю» компании Norton говорит о скором подъеме разработок и достижений в этой сфере.

Одной из причин, по которым двигатель не производится для оснащения автомобилей и мотоциклов - необходимость точного оборудования при его производстве. Малейший брак становится причиной выхода мотора из строя. Это пока не позволяет роторному агрегату заменить поршневой двигатель даже в узкихотраслях производства.

Когда автомобили с поршневыми двигателями внутреннего сгорания уже широко распространились по всему миру, некоторые инженеры попытались разработать роторные двигатели, такие же эффективные и мощные. Существенных успехов добились специалисты из Германии, что неудивительно, ведь именно в этой стране изобрели автомобиль.

Немного истории

В 1957 году свет увидел первый роторно-поршневой двигатель. Впоследствии он был назван именем одного из разработчиков - Феликса Ванкеля. Второй человек, Вальтер Фройде, участвующий в процессе изобретения, незаслуженно попал в тень соавтора. Оба инженера были представителями немецкой компании NSU, производившей авто и мототехнику.

Годом позднее выпустили первый автомобиль с РПД. К сожалению, даже главных конструкторов модель новой машины не удовлетворила. Дви́гатель доработали, и в конце 60-х годов на свет появился седан, получивший звание «Авто года». Это был Ro-80 той же компании NSU. До 100 км он разгонялся всего за 12,8 с, развивал скорость до 180 км/ч, а весил немногим больше тонны. По тем временам это были грандиозные показатели. Лицензию на производство стали сразу же приобретать одна автомобильная компания за другой.

Неизвестно, как сложилась бы судьба изобретения Ванкеля, если бы в 1973 году не начался энергетический кризис, и цены на нефть резко повысились. внутреннего сгорания съедал слишком много топлива, поэтому от его применения начали отказываться.

В конце 90-х авто с моторами Ванкеля выпускали только Россия и Япония. Российские автомобили ВАЗ, оснащенные РПД, малоизвестны, а вот японским моделям удалось добиться мировой популярности.

В настоящее время автомобили с роторными двигателями производит лишь компания Mazda. Японским специалистам удалось усовершенствовать автомобильный мотор до такой степени, что он стал потреблять в 2 раза меньше масла и на 40% меньше топлива. Токсичность выхлопов также сократилась, и двигатель теперь соответствует европейским экологическим стандартам. Новым витком в развитии РПД стало применение водорода в качестве топлива.

Основы устройства роторного двигателя

Чтобы понять, как работает роторный двигатель, надо разобраться с его устройством. Две важные детали РПД - ротор и статор. Ротор, установленный на валу, вращается вокруг неподвижной шестерни - статора. Соединение с шестерней происходит посредством зубчатого колеса. Делают ротор из легированной стали и помещают в цилиндрический корпус.

Ротор двигателя в поперечном срезе имеет треугольную форму, его грани выпуклые, а три вершины постоянно контактируют с внутренней поверхностью корпуса. Таким образом, пространство цилиндра разделяется на три камеры. В результате вращения объем камер меняется. В определенный момент, из-за особенностей формы профиля корпуса, камер становится четыре.

  • На первом этапе в одну из камер через отверстие (впускное окно) запускается топливо.
  • Далее объем камеры с топливом уменьшается, впускное окно полностью закрывается и начинается сжатие топлива.
  • На следующем этапе образуется четыре камеры, срабатывают свечи (их две), происходит возгорание топлива, и совершается полезная работа мотора.
  • При дальнейшем вращении ротора открывается выпускное окно, в которое выходят продукты горения (выхлопные газы).

Как только выпускное окно закрывается, открывается впускное отверстие и цикл повторяется.

Один рабочий цикл совершается за один полный оборот вала. Чтобы поршневой двигатель совершил такую же работу, он должен быть двухцилиндровым.

Для обеспечения герметичности на вершинах ротора устанавливают уплотнительные пластины. К цилиндру их придавливают пружины и центробежная сила, добавляется также давление газа.

Чтобы лучше понять, как устроен роторный двигатель, и что это такое вообще, необходимо изучить схему. На ней представлено поперечное сечение агрегата и процессы, происходящие при движении ротора. Схема роторного мотора показывает, какие этапы проходит ротор, играющий роль поршня.

Типы роторных двигателей

Древнейшие роторные двигатели - это водяные мельницы, в которых колесо вращается от действия воды и передает энергию валу. Устройство современно роторного двигателя, работающего на топливе, значительно сложнее. В нем камера может быть:

  • герметично закрыта;
  • постоянно контактировать с внешней средой.

Первый тип устройств применяют на средствах передвижения, а второй в газовых турбинах. Двигатели с закрытой камерой в свою очередь разделяются на несколько видов. Классификация следующая.

  1. Ротор вращается попеременно то в одну, то в другую сторону, его движение неравномерно.
  2. Вращение происходит в одну сторону, но скорость меняется, движение пульсирующее.
  3. Двигатели с уплотнительными заслонками, сделанными в виде лопастей.
  4. Равномерно вращающийся ротор с заслонками, которые движутся вместе с ротором и выполняют функцию уплотнителя.
  5. Двигатели с ротором, совершающим планетарное движение.

Существует также еще два вида типа роторных двигателей, в которых главный элемент равномерно вращается. Они отличаются организацией рабочей камеры и конструкцией уплотнителей. относится к пятому пункту из представленного выше списка.

Преимущества РПД

Рассмотрев устройство роторного двигателя и принцип работы, можно понять, что он полностью отличается от поршневого. Роторный двигатель внутреннего сгорания более компактный, состоит из меньшего количества деталей, а его удельная мощность больше, чем у поршневого мотора.

РПД легче уравновесить, чтобы свести вибрации к минимуму. Это позволяет устанавливать его на легкий транспорт, например, микроавтомобили.

Количество деталей меньше, чем у поршневого двигателя почти в 2 раза. Размеры тоже значительно меньше, и такое преимущество упрощает развесовку по осям, позволяет добиться большей устойчивости на дороге.

Традиционный поршневой двигатель совершает полезную работу только за два оборота вала, а в роторном двигателе полезная работа совершается за один оборот ротора. Это является причиной быстрого разгона автомобилей с РПД.

Высокий расход топлива РПД

Устройство и на удивление просты, понятны и остроумны. Почему же он не получил распространения подобно поршневому ДВС? Не последнее место здесь занимает экономичность.

Роторный двигатель внутреннего сгорания потребляет слишком много топлива. При объеме всего 1,3 литра на каждые 100 км уходит почти 20 литров бензина. По этой причине запускать массовое производство автомобилей с РПД решились не многие компании.

В свете последних событий на Ближнем Востоке, когда за ресурсы ведется ожесточенная война, а цены на нефть и газ остаются по-прежнему довольно высокими, ограниченное применение РПД вполне понятно.

Другие важные недостатки

Следующим недостатком роторно-поршневого двигателя является быстрый износ уплотнителей, расположенных по ребрам ротора. Износ этот происходит по причине быстрого вращения, и как следствие, трения ребер о стенки камеры.

В дополнение к этому усложняется система смазки ребер. Компания Мазда сделала форсунки, которые впрыскивают масло в камеру сгорания. В связи с этим требования к качеству масла повысились. Постоянной обильной смазки также требует главный вал, вокруг которого происходит движение.

Техническое решение вопросов смазки требовало особого подхода, и справиться с задачей смогли только японские инженеры после долгих лет экспериментов.

Температура выхлопных газов у РПД выше, чем у поршневого двигателя. Это связано с относительно малой длиной рабочего хода грани ротора. Процесс горения едва успевает закончиться, как грань уже переместилась настолько, что открывается выпускное окно. В результате в выхлопную трубу выходят газы, которые полностью не передали давление ротору, и температура их высока. В атмосферу также попадает небольшая часть недогоревшей топливной смеси, что отрицательно сказывается на окружающей среде.

В роторном двигателе сложно обеспечить герметичность камеры сгорания. В процессе работы стенки статора неравномерно разогреваются и расширяются. В результате возможны утечки газа. Особенно нагревается та часть, в которой происходит сгорание. Чтобы справить с этой проблемой, различные части делают из разных сплавов. Это в свою очередь усложняет и удорожает процесс производства двигателей.

На стоимость производства роторно-поршневых двигателей Ванкеля не лучшим образом влияет сложная форма камеры. На самом деле у цилиндра не овальное сечение, как иногда говорят. Сечение имеет форму эпитрохоида и требует высокоточного исполнения.

Итак, становится понятно, что у роторного двигателя есть плюсы и минусы. Их можно свести в следующую таблицу.

Из-за быстрого износа деталей ресурс роторного двигателя составляет около 65 тыс. км. Для сравнения ресурс традиционного двигателя внутреннего сгорания в 2, а то и в 3 раза больше. Обслуживание роторно-поршневых двигателей требует большей ответственности, поэтому они привлекают внимание преимущественно профессионалов. Частично инженерам удалось устранить недостатки автомобилей с РПД, но некоторые из них все же остались.

Роторно-поршневые двигатели Мазды

В то время как другие мировые производители отказались от производства роторных двигателей, корпорация Mazda продолжила работу над ними. Ее специалисты усовершенствовали конструкцию и получили мощный мотор, способный конкурировать с лучшими европейскими агрегатами.

Работать с роторно-поршневым двигателем японцы начали еще в 1963 году. Они выпустили несколько моделей автобусов, грузовиков и легковых авто.

С 1978 по 2003 год компания производила знаменитый спорткар RX-7. Его приемником стала модель RX-8, получившая более 30 наград на международных моторных выставках.

На RX-8 был установлен двигатель Renesis (Rotary Engine Genesis). В разной комплектации автомобиль продавался по всему миру. Самые мощные модели (250 л. с., 8,5 тыс. оборотов в минуту) продавали в Северной Америке и Японии. В 2007 годы в Токио на автосалоне представили концепт кар с мотором Renesis II мощность 300 л. с.

В 2009 году автомобили Мазда с роторным мотором были запрещены в Европе, поскольку выброс углекислого газа превышал существующие на тот момент нормы. В 2102 году массовое производство японских автомобилей с роторными двигателями было прекращено. На данный момент РПД от компании Mazda устанавливают только на спортивные гоночные автомобили.

Основные типы двигателей внутреннего сгорания и паровые машины имеют один общий недостаток. Он состоит в том, что возвратно-поступательное перемещение требует преобразования во вращательное движение. Это, в свою очередь, обуславливает низкую производительность, а также достаточно высокую изнашиваемость деталей механизма, включенных в различные типы двигателей.

Довольно много людей задумывались о том, чтобы создать такой мотор, в котором подвижные элементы только вращались. Однако решить эту задачу удалось только одному человеку. Феликс Ванкель - механик-самоучка - стал изобретателем роторно-поршневого двигателя. За свою жизнь этот человек не получил ни какой-либо специальности, ни высшего образования. Рассмотрим далее подробнее роторно-поршневой двигатель Ванкеля.

Краткая биография изобретателя

Феликс Г. Ванкель родился в 1902 году, 13 августа, в небольшом городке Лар (Германия). В Первую Мировую отец будущего изобретателя погиб. Из-за этого Ванкелю пришлось бросить учебу в гимназии и устроиться помощником продавца в лавке по продаже книг при издательстве. Благодаря этому он пристрастился к чтению. Феликс изучал технические характеристики двигателей, автомобилестроение, механику самостоятельно. Знания он черпал из книг, которые продавались в лавке. Считается, что реализованная позднее схема двигателя Ванкеля (точнее, идея ее создания) посетила во сне. Неизвестно, правда это или нет, но точно можно сказать, что изобретатель обладал незаурядными способностями, тягой к механике и своеобразным взглядом на многие вещи.

Первые типы двигателей

Изобретатель, поняв, как можно осуществить все 4 цикла обычного мотора при вращении, приступил к конструированию. В 1924 году Ванкель создал небольшую мастерскую. Она также выполняла роль лаборатории. Именно здесь Феликс Ванкель стал изучать роторно-поршневые системы. В 1936 году модель, собранная изобретателем, заинтересовала компанию "БМВ". Ванкель получил деньги, ему была предоставлена собственная лаборатория в Линдау.

Там он должен был разрабатывать опытные образцы авиамоторов. Однако до самого конца Второй мировой ни один роторный двигатель Ванкеля не был отправлен в серийное производство. Вероятно, это было вызвано тем, что доведение конструкции до пригодного к эксплуатации состояния и наладка массового производства требовали достаточно много времени

Послевоенные годы

После разгрома фашизма лаборатория была закрыта, а все оборудование, которое там находилось, было переправлено во Францию. В итоге Ванкель остался без работы. Этому поспособствовало его бывшее членство в национальной социалистической партии. Но спустя небольшой период времени Феликса пригласили в компанию NSU в качестве инженера-конструктора. Это предприятие на тот момент считалось старейшим производителем автомобилей и мотоциклов.

Опытный образец

В 1957 году, благодаря поддержке Вальтера Фреде (ведущего инженера в компании NSU), роторно-поршневой двигатель был впервые поставлен на автомобиль. Мотор был установлен на NSU Prinz. Однако первоначальная конструкция была очень далека от совершенства. Она была настолько сложной, что даже для замены свечей нужно было разобрать почти весь мотор. Кроме этого, конструкция была очень ненадежна, неэкономична и имела очень низкий КПД. Двигатель Ванкеля в связи с этим не пошел в серию. Автомобили отправились на конвейер с традиционным ДВС. Тем не менее роторно-поршневой двигатель доказал не только право на свое существование, но и продемонстрировал впечатляющий для того времени потенциал. Перспективы его использования были настолько привлекательны, что инженеров-конструкторов ничего не смогло остановить. Сам изобретатель понимал, что его детище требует усовершенствования, он стремился к тому, чтобы и функционирование, и ремонт двигателя вызывали как можно меньше затруднений. С этого момента началась активная деятельность по доведению мотора до эксплуатационного совершенства.

Двигатель Ванкеля: конструкция

Что собой представляет мотор? В центре ротора имеется круглое отверстие. Оно изнутри покрыто зубцами, как на шестеренке. В отверстие вставляется вал с меньшим диаметром. На нем также есть зубцы. Они препятствуют проскальзыванию вала. Отношения диаметров подбираются таким образом, чтобы перемещение вершин треугольников осуществлялось по одной замкнутой кривой. Она именуется "эпитрохоида". Задача Ванкеля состояла в том, чтобы для начала понять, что работа такого механизма возможна. Затем ему нужно было все точно и верно рассчитать. В результате поршень, выполненный в форме треугольника Рело, отсекает три камеры переменного положения и объема.

Особенности

Конструктивная характеристика двигателя значительно выигрывает в сравнении с обычными моторами. В частности, герметизация камер обеспечивается за счет торцевых и радиальных уплотнительных пластин. Они прижимаются к "цилиндру" с помощью ленточных пружин, давления газа и центробежных сил. Особого внимания заслуживает и характеристика двигателя с точки зрения производительности. За весь цикл вал совершает 3 полных оборота. В обычном поршневом моторе такого результата можно добиться при использовании шести цилиндров.

Внедрение в промышленность

После проведения первой успешной демонстрации в 1957 году двигатель Ванкеля заинтересовал крупнейших автогигантов того времени. Так, первой компанией, выкупившей лицензию, стала Curtiss-Wright. Спустя год изобретение стали использовать такие известные предприятия, как Mazda, Friedrich Krupp, MAN и Daimler-Benz. За достаточно непродолжительный период лицензии приобрело порядка ста компаний, в том числе с мировым именем: Ford, BMW, Porsche, Rolls-Royce.

Преимущества

Какие достоинства имеет двигатель Ванкеля? Принцип работы мотора заключается в том, что реализация любого четырехтактного цикла осуществляется без использования механизма газораспределения. Благодаря этому значительно упрощается конструкция мотора. В обычном 4-тактном поршневом моторе примерно на тысячу элементов больше. Огромный интерес крупнейших автомобильных предприятий был вызван потенциалом конструкции. Несомненными преимуществами является простота производства, несложный ремонт двигателя, компактность и небольшой вес. Все это способствует улучшению управляемости машины, облегчает расположение трансмиссии.

Компактность мотора позволяет создать удобный и довольно просторный салон. Усовершенствованные модели двигателя способны развивать высокую мощность при достаточно экономном расходе топлива. К примеру, современный мотор при объеме 1300 см 3 обладает 220 л. с. Если оснастить двигатель Ванкеля турбокомпрессором, то можно получить мощность до 350 л. с. Еще одним достоинством конструкции является очень низкий уровень вибраций и шумов. Двигатель Ванкеля отличается механической уравновешенностью. Снижение уровня шумов и вибрации достигается небольшим количеством деталей (их на 40% меньше, чем в традиционных моторах). Стоит также отметить и динамические характеристики мотора. На низкой передаче без особенной нагрузки можно разогнать машину до 100 км/ч при высоких оборотах. В конструкции мотора отсутствует механизм, преобразовывающий возвратно-поступательное перемещение во вращательное. За счет этого двигатель Ванкеля может выдерживать большие обороты в сравнении с традиционными ДВС.

Завершение эйфории

В 1964-м вышел автомобиль NSU Spyder, а после него была выпущена легендарная модель Ro 80. И в настоящее время в мире достаточно много существует клубов любителей этих машин. Затем с конвейера сошли такие модели, как Corvette XP, Mercedes C-111, Citroen M35. Однако единственной компанией, которая занялась массовым производством, стала Mazda. С 1967 года она выпускала по 2-3 новых автомобиля с РПД. Двигатель Ванкеля ставили на легкие самолеты, снегоходы, катеры. В 1973 году наступил конец эйфории. В то время нефтяной кризис был в разгаре. Именно в этот период проявился основной недостаток РПД - неэкономичность. Кроме компании Mazda, все производители свернули программы по выпуску автомобилей с роторными двигателями. Однако только Mazda продолжала выпуск таких машин. У компании значительно сократились продажи в Америке.

Недостатки РПД: недолговечность и ненадежность

Наряду с достоинствами, роторные двигатели обладали и существенными минусами. В первую очередь, они были очень недолговечными. Так, одна из первых моделей РПД в ходе испытаний выработала весь ресурс за 2 часа. Более успешный прототип смог выдержать 100 часов. Однако это не обеспечивало нормальной эксплуатации машины. Главная проблема состояла в неравномерности износа внутренней поверхности камеры. В ходе работы на ней образовывались поперечные борозды. Они получили весьма красноречивое название: "метки дьявола". После получения лицензии компания Mazda сформировала специальный отдел, который занимался усовершенствованием мотора. Вскоре выяснилось, что в процессе вращения ротора заглушки, расположенные на его вершинах, начинают вибрировать. Из-за этого и появляются эти борозды. Сегодня проблема долговечности и надежности решена. Для этого в производстве используется высококачественное покрытие, в том числе и керамическое.

Высокая токсичность выхлопов

Это еще один недостаток РПД. В сравнении с традиционными моторами, двигатель Ванкеля выделяет меньшее количество окислов азота, но во много раз больше углеводородов, что обусловлено неполным сгоранием топлива. Инженеры Mazda достаточно быстро нашли эффективное решение проблемы. Специалисты создали "термальный реактор". В нем происходит "дожигание" углеводородов. Mazda R 100 стала первым автомобилем, в котором был применен этот элемент. В 1968 была выпущена еще одна модель с "термальным реактором" - Familia Presto Rotary. Это авто, одно из немногих, сразу прошло достаточно жесткую экологическую проверку, выдвинутую США в 1970-м для импортируемых ТС.

Экономичность

Это еще одна проблема РПД. Частично она вытекает из описанной выше. Расход топлива в стандартном РПД значительно выше, чем у ДВС. Эта проблема снова была решена специалистами Mazda. Внедрив комплекс мер, в числе которых переработка карбюратора и термореактора, добавление в выхлопную систему теплообменника, создание нового зажигания и разработка каталитического конвектора, инженеры добились снижения расхода на 40%. Это позволило выпустить в 1978 году модель RX-7.

Отечественное производство

Кроме компании Mazda, автомобили с РПД выпускал и "АвтоВАЗ". В 1974-м на заводе было сформировано специальное конструкторское бюро. В Тольятти началось строительство цехов для серийного выпуска РПД. В связи с тем, что первоначально предполагалось, что ВАЗ будет просто копировать западную технологию, было решено наладить воспроизводство двигателя Mazda. При этом совершенно не учитывались многолетние наработки отечественных институтов моторостроения.

Достаточно долго велись переговоры между Ванкелем и советскими чиновниками. Некоторые встречи проходили непосредственно в Москве. Денег, однако, было недостаточно, поэтому использовать некоторые технологии так и не удалось. В 1976-м был выпущен первый односекционный мотор ВАЗ-311. Его мощность составила 65 л. с. В течение последующих пяти лет проводилась доводка конструкции. После этого завод выпустил 50 опытных автомобилей с двигателем Ванкеля. Они мгновенно разошлись среди сотрудников предприятия. Однако вскоре выяснилось, что мотор в машинах только внешне был похож на японский. Конструкция его была крайне ненадежна. В течение полугода все двигатели были заменены, а штат конструкторского бюро был сокращен.

Однако отечественное производство мотора было спасено спецслужбами. Их не слишком беспокоил ресурс конструкции и расход топлива. Больше их привлекали динамические характеристики двигателя. В короткое время из двух моторов ВАЗ-311 был собран один двухсекционный. Его мощность увеличилась почти вдвое - до 120 л. с. Двигатель стали ставить на специальную единицу - ВАЗ-21019. Эта модель получила неофициальное наименование "Аркан".

Перепрофилирование

Спецзаказы вдохнули вторую жизнь в конструкторское бюро. На ВАЗе стали выпускать двигатели для авто- и водного спорта. Машины стали часто завоевывать первые места. Спортивные чиновники, в свою очередь, были вынуждены запретить использование РПД. В 1987 на смену Поспелову (руководителю конструкторского бюро) пришел Шнякин. Он недолюбливал наземный транспорт, тяготея больше к авиации. С начала его руководства СКБ перепрофилировало свою деятельность на выпуск двигателей для воздушных машин. Это была неверная стратегия, поскольку самолетов в стране выпускается намного меньше, чем автомобилей. Завод же получал прибыль преимущественно с продажи автомоторов.

Следующей ошибкой стала переориентация на маломощные двигатели. Японцы устанавливают РПД на спортивные машины. А ВАЗ выпускал мололитражные модели "Ока", несмотря на то что динамичные моторы целесообразнее было бы ставить на более быстроходные авто. Так или иначе, на отечественных дорогах оказалось несколько микролитражек "Ока" с РПД. К 1998 году, наконец, завершилась подготовка гражданского варианта двухцилиндрового 1.3-литрового роторного мотора. Его устанавливали на модели ВАЗ 2107-2109 и 2105.

В заключение

Почему же ведущие производители мира все еще не перешли окончательно на выпуск машин с РПД? Дело в том, что для изготовления таких моторов необходима, в первую очередь, очень точная технология, включающая в себя множество разнообразных нюансов. Не каждая, даже крупная компания, может пойти по пути Mazda. Кроме того, дело в оборудовании. Для выпуска двигателя Ванкеля необходимы высокоточные станки для вытачивания поверхностей с эпитрохоидой. Для оборудования, которое используется сегодня на заводах, такая работа вполне выполнима. Сегодня серьезными исследованиями РПД занимается только Mazda. Инженеры компании постоянно совершенствуют конструкцию, решают множество различных проблем. Выпускаемые в Японии роторные двигатели соответствуют принятым в мире стандартам по надежности, расходу топлива и экологичности.

Единственная на данный момент выпускаемая в промышленном масштабе модель мотора роторного типа — это двигатель Ванкеля. Его относят роторным разновидностям движков, имеющим планетарное круговое движение основного рабочего элемента. Благодаря такой конструктивной компоновке, решение может похвастаться предельно простым техническим устройством, но не характеризуется оптимальностью в способах организации рабочего процесса и потому обладает своими неотъемлемыми и серьезными недостатками.

Двигатель Ванкеля роторный представлен во множестве вариаций, но, по сути, они различны между собой разве что численностью роторных граней и соответствующей формой внутренних поверхностей корпуса.

В общих чертах рассмотрим конструктивные особенности данного решения и углубимся немного в историю его создания и область использования.

История решений такого типа стартует в 1943 году. Именно тогда изобретателем Майларом была предложена первая аналогичная схема. После спустя некоторое время было подано еще ряд патентов на движки такой схемы. Также и разработчиком немецкой фирмы NSU. Но основным минусом, от которого страдал роторно поршневой двигатель Ванкеля, была система из уплотнений, расположенная между ребер на стыках соседствующих граней элемента треугольного типа и поверхностями неподвижных корпусных частей. Для решения столь трудной задачи подключился Феликс Ванкель, специализирующийся на уплотнениях. После, за счет своей устремленности и инженерному складу ума он возглавил разрабатывающую группу. И уже к 57-у году в недрах немецкой лаборатории был собран первый вариант, оснащенный основным вращающимся элементом треугольного типа и рабочей капсульной камерой, где вращательный элемент был намертво закреплен, в то время как вращение осуществлялось корпусом.

Куда более практичная вариация характеризовалась неподвижной рабочей камерой, в которой осуществлялось вращение треугольника. Такой вариант дебютировал годом позднее. К ноябрю 59-го года прошлого столетия фирмой были объявлены работы по созданию функционального решения роторного типа. За кратчайшие сроки множеством компаний по всему миру была приобретена лицензия на эту разработку, и из сотни фирм, около трети были из Японии.

Решение оказалось довольно компактным, мощным, с малым числом деталей. Европейские салоны пополнились машинами с роторными вариациями движков, но, увы, они обладали малым вращающим ресурсом, стремительным потреблением топлива и токсичным выхлопом.

Из-за нефтяного кризиса семидесятых попытки улучшить разработку до нужного уровня были свернуты. Лишь японской Маздой все также продолжались работы в этой области. Также трудился и ВАЗ, поскольку топливо в стране был очень дешевым, а мощные, хотя и с низким ресурсом, моторы были нужны силовым министерствам.

Но спустя тридцать лет ВАЗ закрыл производство и только Мазда до сих пор серийно запускает транспорт с моторами роторного типа. На данный момент выпускается лишь одна модель с таким решением – это Мазда RX-8.

После небольшого экскурса в историю стоит подробно остановиться на достоинствах и недостатках.

Высокая мощность, почти вдвое превышающая показатели поршневых вариаций с четырьмя тактами. Массы неравномерно движущихся элементов в нем сравнительно ниже, чем в случае поршневых вариаций, и амплитуда движения значительно ниже. Это возможно из-за того, что в поршневых решениях происходят возвратно-поступательные движения, в то время как в рассматриваемом типе применяются планетарной схемы.

На большую мощность влияет и то, что она выдается в течение троих четвертей при каждом обороте вала. Для сравнения, одноцилиндровый поршневой мотор даёт мощность лишь на протяжении четверти каждого из оборотов. Потому за единицу объема камеры сжигания берется куда больше мощности.

При объёмах камеры в тысячу триста сантиметров, у RX-8 в плане мощности, достигается показатель двести пятьдесят лошадиных сил. У предшественника, а именно у RX-7, с аналогичным объемом, но с турбиной было триста пятьдесят лошадиных сил. Потому особыми чертами автомобиля становится отличная динамика: при низких передачах можно без лишних нагрузок на мотор разогнать транспортное средство до сотни на больших оборотах движка.

Рассматриваемый тип движка куда проще уравновешивается механически и избавляется от вибрации, что способствует повышению комфортности лёгкого транспортного средства;

По части размеров рассматриваемый тип движка в полтора-два раза меньше по сравнению с равными по мощности поршневыми моторами. Число деталей меньше примерно на сорок процентов.

Недостатки двигателя

Небольшая длительность рабочего хода роторных граней. Хоть данный показатель нельзя в чистую сравнивать с другими вариантами из-за разных типов хода поршней и вращающегося элемента, у рассматриваемой разновидности данный показатель примерно на 20% меньше. Тут имеется один существенный нюанс — у поршневых решений происходит линейное увеличение объемов, которое аналогично направлению расстояния от ВМТ до НМТ. Но вот в случае рассматриваемого типа агрегатов данное действие происходит сложнее и лишь отрезок траектории передвижения оказывается непосредственно линией хода.

Потому решение характеризуется меньшей топливной эффективностью, нежели у поршневых вариаций. Потому малая длительность способствует очень высокой температуре выходящих газов – рабочим газам не удается во время передать большую часть давления треугольнику, поскольку выполняется открытие окна выхлопа и горячие массы с еще не прекратившимся горением объемных фрагментов выходят по выхлопной трубе. Потому их температура крайне высокая.

Сложность формы камеры горения. У данной камеры серповидная форма и солидная область, где газов контактируют со стенами и ротором. Потому крупная тепловая доля приходится на нагрев элементов движка, а это уменьшает коэффициент полезного действия тепла, но при этом возрастает нагрев движка. Также такие формы камеры приводят к ухудшенному смесеобразованию и замедленному горению рабочих смесей. Потому на движке RX-8 ставят две зажигательные свечи на одну роторную секцию. Такие свойства негативно влияют и на термодинамический коэффициент полезного действия.

Малый вращательный момент. Дабы снималось вращение с работающего ротора, вращательный центр которого непрерывным образом выполняет вращение планетарного типа, в данном моторе применяют на основном валу диски с цилиндровым расположением. Проще говоря — это все является элементами преобразователя. То есть, решение рассматриваемого типа так и не смогло в полной мере избавиться от основного минуса поршневых вариаций, а именно КШМ.

Хоть он и являет собой облегченный вариант, но основные минусы этого механизма: пульсация вращающего момента, малые размеры плеча основного элемента также присутствуют и в рассматриваемом типе.

Именно потому вариация с одной секцией не эффективен, и их нужно увеличивать до двух или трех секций, с целью получения приемлемых характеристик работы, еще рекомендуется устанавливать на вале и маховое колесо.

Кроме присутствия в движке рассматриваемого типа механизма преобразователя, на недостаточный для такого мотора вращающий момент может повлиять и тот нюанс, что кинематические схемы в таких решениях устроены слишком мало рационально в плане восприятия поверхностью вращающегося элемента давления рабочих расширительных масс. Потому только определенная часть давления, а это порядка одной трети – пере компилируется в рабочее вращение элемента, тем самым создавая вращающий момент.

Наличие вибраций внутри корпуса. Проблема в том, что рассматриваемый в статье тип систем подразумевает неравномерное по массе движение. То есть во время вращения массовый центр агрегата выполняет непрерывное передвижение вращательного типа вокруг массового центра, а радиус этого движения соответствует цилиндровому плечу основного моторного вала. Потому на движковый корпус внутри влияет вращающийся постоянным образом силовой вектор, соответствующий силе центробежного типа, появляющейся на находящемся во вращении элементе. То есть он в процессе вращения на также находящемся в движении цилиндрическому валу характеризуется неизбежными и выраженными элементами движения колебательного типа.

Что и является причиной неизбежных вибраций.

Низкая устойчивость к износу в торце уплотнений радиального типа по углам вращающегося треугольника. Поскольку к ним поступает существенная нагрузка радиального типа, свойственная из-за того, что таков двигатель Ванкеля принцип работы.

Высокая вероятность прорыва газовых масс с высоким давлением из зоны одного такта работы в другой такт. Причина кроется в том, что роторный ребровой контакт уплотнителя и стенок камеры сжигания выполняется по единой линии небольшой толщины. Также имеется вероятность прорыва по гнездам, в которые устанавливают свечи, в момент прохода ребра основного вращающегося элемента.

Сложность смазочной системы вращающегося элемента. Как пример, в уже ранее упомянутой модели японского производителя особыми форсунками впрыскивается масло в камеры сжигания, дабы трущиеся в процессе вращения о стенки камеры ребер смазывались. За счет этого усиливается выхлопная токсичность и параллельно с этим повышает необходимость движка в качественном масле.

Также, во время высоких оборотов повышаются запросы к смазке поверхности цилиндрического типа цилиндрического элемента основного вала, вокруг которого осуществляется вращение, и которое занято снятием главного усилия с вращающегося элемента, также переводя во вращательное движение вала. Из-за этих двух технических трудностей, разрешить которые довольно проблематично, проявлялась недостаточная смазка в случае высоких оборотов наиболее загруженных трением элементов движка, а значит, резким образом уменьшался движущий ресурс движка. Из-за этого недостаточного решения выходит очень малый ресурс движков рассматриваемого типа, которые были выпущены отечественным АвтоВАЗом.

Большая требовательность к точности выполнения элементов со сложной формой делают таков движок трудным в производстве. Для его производства требуется высокоточное и дорогое оборудование - станки, способные выполнить рабочую камеру с криволинейной поверхностью.

Если говорить о вращающемся элементе, то у него так же имеется форма треугольника, у которого выпуклые поверхности.

Сделав выводы из всего вышеописанного можно отметить, что рассматриваемый тип обладает не только выраженными преимуществами, но и большим количеством фактически непреодолимых минусов, не позволяющих ему победить поршневые вариации. Однако такая перспектива всерьез обсуждалось сорок или пятьдесят лет назад, и аналитические обзоры пестрили мнениями, что уже к началу девяностых годов прошлого столетия роторные решения разнообразных типов будут доминировать на автомобильном рынке.

Однако, даже с учётом негативных сторон и технических проблем, такое решение смогло неплохо себя зарекомендовать в техническом плане и даже вырвать свою долю на рынке, поскольку минусы конкурентного решения – поршневого мотора с КШМ еще серьёзнее сказываются на работе. И это с учётом того, что поршневой движок долгое время пытались улучшить.

Одним из самых проблематичных моментов при выполнении любого роторного движка — это воссоздание эффективной уплотняющей системы, необходимой для создания замкнутого объёма в рабочих камерах рассматриваемого типа решений. Пока что в схемах это считается одним из главных препятствий. Тут предстоит выполнить сложную в изготовлении уплотнительную систему.

Дабы набить руку и набраться положительного опыта в данном занятии, можно попробовать выполнить компактный рабочий вариант решения рассматриваемого типа непосредственно с «нуля».

Ориентировочный показатель мощности одной из роторных секцией будет находиться в районе сорока лошадиных. А значит, движок рассматриваемого типа, скажем, с двумя секциями, достигнет показателя в восемьдесят лошадиных сил. И так далее по схожему принципу.

В целом, изготовление такого типа решений всегда идет с оптимальным ритмом, при том что можно и вовсе отказаться от сторонних элементов. Как правило, корпусная часть таких решений выполняется из конструкционной стали легированного типа, подвергнутой упрочнению термохимического типа и стойкой к высоким температурам.

Как вариант, оптимальной твердостью поверхностного слоя можно подобрать показатель в районе семидесяти HRC. По части глубины, термически упроченный слой находится в районе полтора миллиметров. Аналогичным образом обрабатываются и до того же показателя твердости и устойчивости к износам уплотнения радиального и торцевого типа.

Такое решение обладает воздушным охлаждением, а смазочное масло будет поступать к камере сжатия посредством двух специальных форсунок. То есть, в данном случае не потребуется смешивать масло и бензин, как это бывает в двухтактных вариациях.

Движок рассматриваемого типа ставят на токарный станок, где он в течение нескольких часов подвергается обкатке без воздействиями температуры. Таким образом, можно оценить эффективность уплотнений и герметичность выполняемых секций как достаточно приемлемую.

Впоследствии можно измерить уровень давления, который наблюдается в зоне сжатия.

Понравилось? Лайкни нас на Facebook