Принцип работы рулевого устройства судна. Конструкция рулей, рулевое устройство, классификация судов, транспортные суда, служебно-вспомогательные суда, суда технического флота и специальные суда, суда на подводных крыльях. Назначение технических средств у

Рулевое устройство предназначено для обеспечения управляемости судном (устойчивости на курсе и поворотливости).

Общий вид рулевого устройства показан на рис.6.20. В состав рулевого устройства входят руль, привод руля, привод управления.

Вруль входит перо руля и баллер. Основой пера руля является мощная вертикальная балка –рудерпис . С рудерписом соединены горизонтальные рёбра жесткости и петли. По сечению рули делятся на пластинчатые и обтекаемые. Обтекаемый руль - пустотелый в сечении имеет каплевидную форму, улучшает управляемость, увеличивает КПД винта, обладая собственной

Рис. 6.19.Основные типы рулей: а – обыкновенный небалансирный; б – балансирный; в – балансирный подвесной; г – полубалансирный полуподвесной.

плавучестью, уменьшает нагрузку на подшипники. Из-за этих преимуществ практически все морские суда имеют обтекаемые рули. По положению оси вращения рули делятся на: небалансирные, полубалансирные и балансирные, По методу крепления к корпусу судна - обыкновенные, подвесные и полуподвесные (рис.6.19). У балансирных и полубалансирных рулей часть площади руля (до 20%) расположена в нос от оси вращения руля, что уменьшает момент и мощность, необходимую для поворота руля и нагрузку на подшипники.

Баллер служит для передачи вращающего момента на перо руля и его поворота. Баллер – прямой или изогнутый стержень, который крепится одним концом к перу руля с помощью фланца или конуса, а другой конец входит через гельмпортовую трубу и сальник в корпус судна. Баллер поддерживается подшипниками, на его верхний конец насажен румпель – одноплечий или двуплечий рычаг.

Рулевой привод связывает баллер руля с рулевой машиной и состоит из румпеля и соответствующей передачи к нему от рулевой машины. Наибольшее применение имеет гидравлический плунжерный привод рис. 6.21 и рулевая машина с качающимися цилиндрами рис. 6.23. Находят применение зубчатосекторный привод(устаревший тип), румпельный и винтовой (рис.6.22).

Рис. 6.20. Рулевое устройство.

1 – перо руля; 2 – рудерпис; 3 – баллер; 4 – нижний подшипник; 5 – рулевая машина; 6 – гельпортовая труба.

От рулевого устройства зависит безопасность судна, поэтому требуется, чтобы кроме основного привода был и запасной. Основной привод должен обеспечивать поворот руля на полном ходу судна с 35° одного борта до 30° другого борта за 28 сек (механический ограничитель поворота руля на 35 о, а конечный выключатель на 30 о). Запасной привод должен обеспечивать перекладку руля при половинной скорости (но не менее 7 узлов) с 20° на 20° другого борта за 60 сек. Аварийный привод должен быть предусмотрен, если какая-либо ватерлиния проходит выше палубы румпельной (помещения, где размещена рулевая машина).

Учитывая особую важность рулевого устройства для безопасности судна, на современных судах обычно устанавливают два одинаковых привода, которые соответствуют требованиям к основному приводу (рис. 6.21). Это значительно повышает надёжность рулевого устройства, так как в этом случае возможна взаимная замена узлов.

При гидроприводе поворот руля осуществляется за счёт подачи масла высокого давления в один из гидроцилиндров и под действием плунжера поворачивается румпель и руль (из противоположного гидроцилиндра масло свободно сливается).

Рис. 6.21. Общий вид (а) и схема действия электрогидравлической рулевой машины (б): 1-баллер, 2 – румпель, 3 – цилиндр, 4 – плунжер, 5 – электродвигатель, 6 – масляный насос, 7 – пост управления.

Рис. 6.22. Рулевые приводы: а – румпельный; б – винтовой; в – секторный.

1- перо руля; 2- баллер; 3- румпель; 4- штуртрос; 5- зубчатый сектор; 6- пружинный амортизатор;

7-винтовой шпиндель; 8- ползун.

Ручной румпельный привод (рис.6.22.а ) применяется на катерах. Так как тросы намотаны на барабан в противоположных направлениях, то при вращении штурвала с барабаном один трос удлиняется, а второй укорачивается, что заставляет поворачиваться румпель и руль.

Винтовой привод (рис.6.22.б ) применяется на небольших судах. Так как резьба на шпинделе в районе ползунов противоположного направления, то при вращении шпинделя в одну сторону ползуны сближаются, а при вращении в другую - удаляются друг от друга. Это заставляет поворачиваться румпель и руль.

Зубчато-секторный привод раннее достаточно широко применялся (рис.6.22.в ). Приводится в движение электромотором через редуктор. В этом приводе румпель как всегда жёстко посажен на баллер, а зубчатый сектор свободно вращается на баллере. Румпель связан с сектором пружинным аммортизатором, что смягчает удары волн передаваемые от пера руля на редуктор

Привод управления рулевой машины связывает штурвал, расположенный в рулевой рубке и рулевую машину. Наиболее распространены электрический и гидравлический приводы.


Рис. 6.23. Рулевой привод с качающимися цилиндрами

В узкостях на малом ходу судно плохо слушается руля, так как малая скорость набегающего на руль потока резко уменьшает поперечную гидродинамическую силу на руле. Поэтому в этих случаях обычно прибегают к помощи буксиров или на судне устанавливают средства активного управления (САУ): подруливающие устройства, выдвижные поворотные винтовые колонки, активные рули, поворотные насадки.

Подруливающие устройства (рис. 6.24.а) обычно устанавливают в носовой части судна, а иногда и в кормовой. Для того, чтобы ниша в корпусе не создавала дополнительного сопротивления на ходу судна, она закрывается жалюзями.

Выдвижная рулевая колонка обеспечивает упор в любом направлении, поэтому она часто используется на малых судах и плавсредствах для удержания на одном месте на больших глубинах. На малых глубинах возможно повреждение колонки.

Активный руль (рис.6.25) – это установленный в пере руля небольшой винт с приводом от электродвигателя или гидродвигателя, расположенного в капсуле, встроенной в руль. В некоторых случаях привод винта осуществляется от электродвигателя, расположенного в румпельной через вал, который проходит через полый баллер. При неработающем главном двигателе руль может поворачиваться до 90 о и создавать упор в нужном направлении при работе вспомогательного винта. Иногда этот вариант САУ используется, когда необходимо обеспечить малую скорость судна порядка 2 – 4 узлов

Рис. 6.24. Подруливающее устройство (а) и выдвижная поворотная движительно-рулевая колонка (б).

Поворотная насадка (рис. 6.25.б) представляет собой обтекаемое кольцеобразное тело, внутри которого вращается винт. При повороте насадки отклоняется отбрасываемая винтом струя воды, что вызывает поворот судна. Поворотная насадка значительно улучшает поворотливость на малых ходах и особенно на заднем ходу. Это объясняется тем, что вся струя воды отклоняется насадкой как на переднем, так и на заднем ходу, в отличие от руля. Кроме того, в ряде случаев насадка позволяет увеличить КПД винта.

К

рыльчатый движитель, как было показано в первой части, позволяет перемещаться судну в любом направлении.

Рис.6.25 Активный руль (а) и поворотная насадка (б): 1- перо руля; 2- вспомогательный винт; 3- электродвигатель;4- баллер; 5- электрокабель; 6- гребной винт; 7-насадка поворотная.

Все большую популярность приобретают азимутальные комплексы “AZIPOD”, которые устанавливаю на пассажирских судах и даже на суда арктического плавания. Типичная компоновка предусматривает: две кормового расположения поворотные винторулевые колонки, удерживающие гондолы, вмещающие в себя электродвигатели, приспособленные для вращения “тянущих” гребных винтов (ВФШ) (рис.6.26). Мощность каждой из колонок до 24000 квт.

Рис.6.26. Винторулевые колонки типа “AZIPOD”

Специальный гидравлический привод обеспечивает поворот каждой из гондол на 360° с угловой скоростью до 8° за секунду. Управление вращением винтов дает возможность выбрать любой режим работы в диапазоне от “полного вперед” до “полного назад”. Существенно, что режим “полный назад” может быть обеспечен судну без разворота колонок-гондол на 180°.

Ходовой режим” -используется при движении судна с относительно большой скоростью; гондолы при этом поворачиваются синхронно (углы совместной перекладки в пределах ±35°). Отмечается высокая гидродинамическая эффективность такого рулевого комплекса: управляемость судна остается приемлемой даже при остановке вращения винтов. Ходовой режим допускает экстренное торможение (за счет реверса – без поворота колонок);

Режим маневрирования” (мягкая форма) – используется при движении судна с относительно малой скоростью. В этом режиме одна из гондол сохраняют функцию “маршевого” устройства, вторую разворачивают на 90°, заставляя работать в качестве мощного кормового подруливающего устройства;

Режим маневрирования” (жесткая форма ) – винты, переложенные на правый и левый борт (+45° и –45°), заставляют вращаться “вперед” или “назад”. Если винт правой гондолы рабо­тает “вперед”, левой – “назад”, возникает поперечная управляющая сила в направлении правого борта; в симметричной ситуации – в направлении левого борта.

Конструкция рулевых устройств с пассивным рулем зависит от следующих факторов:

Конструктивных особенностей кормового подзора судна;

Типа рулей;

Типа соединения руля с баллером;

Типа рулевого привода.

Рули . Судно может иметь один (в ДП), два (за винтами на двухвинтовых судах), а также три и более рулей.

Современный судовой руль (рис.208) представляет собой вертикальное крыло с внутренними подкрепляющими ребрами, вращающееся вокруг вертикальной оси, площадь которого у морских судов составляет 1/40–1/60 площади погруженной части ДП (произведения длины судна на его осадку: LT).

На форму руля значительное влияние оказывает форма кормовой оконечности судна и расположение ГВ.

По форме профиля пера рули делятся на плоские и профильные обтекаемые . Профильный руль состоит из двух выпуклых наружных оболочек, имеющих с внутренней стороны ребра и вертикальные диафрагмы, сваренных друг с другом и обра­зующих каркас для повышения жесткости, который с обеих сторон покрыт приваренными к нему стальными листами.

Профильные рули имеют перед пластинчатыми ряд преимуществ: более высокое значение нормальной силы давления на руль; меньший момент, необходимый для поворота руля. Кроме того, обтекаемый руль позволяет улучшить пропульсивные качества судна. Поэтому они нашли наибольшее применение.

Внутреннюю полость пера руля заполняют пористым материалом, предотвра­щающим попадание воды внутрь. Перо руля крепится к рудерпису с помощью штырей (рис. 209, 210). Рудерпис отли­вают (или отковывают) заодно с петлями для навешивания руля на рудерпост (отливку иногда заменяют сварной конструкцией), являющийся неотъемлемой частью ахтерштевня.

По способу соединения с корпусом и количеству опор пера пассивные рули разделяют:

На простые (многоопорные) (рис. 211, а , б, в );

Полуподвесные (одноопорные – подвешенные на бал­лере и опертые на корпус в одной точке) (рис. 211, в );

Подвесные (безопорные, подвешенные на баллере) (рис. 211, г ).

По положению оси баллера относительно пера разли­чают рули небалансирные (обычные), у которых ось баллера проходит вблизи передней кромки пера, и балансирные, ось бал­лера у которых расположена на некотором расстоянии от передней кромки руля. Полуподвесные балансирные рули называют также полубалансирными (см. рис. 211).

Небалансирные рули уста­на­в­ливают на одновинтовых судах, полубалансирные и балан­сир­ные – на всех судах. Применение подвесных (балансирных) рулей позволя­ет снизить мощность рулевой машины за счет умень­шения крутящего момента, необходимого для пе­рекладки руля.

Наиболее важными геометрическими характеристиками руля являются:

Площадь S r ;

Относительное удлинение l r = S r /b 2 r = h 2 r /S r ;

- средняя ширина руля b r ;

Высота пера руля h r ;

Форма и относительная толщина профиля.

Величина площади пера руля зависит от типа судна и его назначения. Для ориентировочной оценки необходимой площади руля обычно используют отношение S r /LT ,которое для морских транспортных судов с одним рулем составляет 1,8–2,7, для танкеров – 1,82,2; для буксиров 36; для судов прибрежного плавания 2,33,3.

Баллер руля (см. рис. 211, 213) – это массивный вал, при помощи которого поворачи­вается перо руля. Нижний конец баллера обычно имеет криволи­нейную форму и заканчивается лапой – фланцем, служащим для соединения баллера с пером руляболтами, что облегчает съем руля при ремонте (рис.212). Иногда вместо фланцевого (рис. 212, а ) применяют замковое (рис. 212, б ) или конусное соединение. Крепление пера руля к баллеру и корпусу на многих типах судов имеет много общего и отличается незначительно. Конструкции верхнего узла крепления приведены на рис. 209, а нижнего – на рис. 211, а, б ) Установка под штырь чечевицы из закаленной стали для уменьшения трения в точке опоры пера руля показана на рис. 210, а .

Баллер руля входит в кормовой подзор корпуса через гельмпортовую трубу, обеспечивающую непроницаемость корпуса, и имеет не менее двух опор (под­шипников) по высоте. Нижняя опора располага­ется над гельмпортовой трубой и, как правило, имеет сальниковое уплотнение, препятствующее попаданию воды в корпус судна; верх­няя опора размещается непосредственно у места закрепления сектора или румпеля. Обычно верхняя опора (опорно-упорный подшипник) воспринимает массу баллера и пера руля, для чего на баллере делают кольцевой выступ.

Рулевые приводы . На судах морского флота эксплуатируются разнообразные рулевые приводы, среди которых преимущественное распространение получили рулевые машины с электрическими и гидравлическими приводами отечественного и зарубежного производства.

Они обеспечивают передачу усилий рулевого дви­гателя к баллеру. Среди них широко известны два основных типа приводов:

- механический секторно-румпельный при­­вод от электромотора (рис.213, 214);

Силовой плунжерный привод от гидро­ци­линдров (рис.215).

Рулевые передачи, посредством которых осу­ществляется связь поста управления с испол­ни­тель­ным механизмом рулевого привода, имеют различное устройство. На современных судах применяют в основном электрические и гидрав­лические передачи.

Рулевое устройство с механическим секторно-рум­пель­ным приводомприменяется на судах малого и среднего водоизмещения. Кинематическая схема передачи усилия от рулевой машины к перу руля этого привода хорошо показана на рис.213.

В таком приводе румпель жестко скреплен с баллером руля. Сектор, свободно наса­женный на баллер, связан с румпелем при помощи пружинного амортизатора, а с рулевым двигателем - зубчатой передачей. Пе­рекладка руля осуществляется электромотором через сектор и румпель, а динамические нагрузки от ударов волн гасятся аморти­за­то­рами.

Схема управления секторно-рулевой ма­шиной с электрической передачей при­ведена на рис.214.

В составсхемы управления рулевым устройством входят:

Пост управления со следящей элек­трической системой;

Электрическая передача от поста упра­вления к электромотору;

Основной пост управления находится в рулевой рубке у путе­вого компаса и репи­тера гирокомпаса. Штурвал или пульт управ­ления рулем монтируют обычно на одной колонке с авторулевым агрегатом. Основным элементом электрической передачи являются система контроллеров, помещенных в штур­вальной колонке и связанных элек­тропроводкой электродвигателем основного привода в румпельном отделении. Крутящий момент от электродвигателя передается на зубчатый сектор, соединенный с румпелем и баллером, через червячно-редукторную передачу. Все механизмы смонтированы в виде самостоятельного агрегата. Румпель крепится на баллере на двух шпонках и связан с сектором двумя пружинными амортизаторами.

Рулевые устройства с гидравлическим приводом в упрощенном виде показаны на

рис.215; 216). В его состав входят два (или четыре) гидроцилиндра, маслонасос, телемотор и гидросистема.

Работа устройства осуществляется сле­дующим образом. При вращении шту­рвала, размещенного в рулевой рубке, те­лединамический датчик по­ста управления фор­ми­рует командный сигнал в виде давления масла, которое гидросистемой нагне­тается в цилиндр те­ле­мо­тора. Под действием это­го сигнала телемотор при­во­дит в действие ры­ча­ж­ную систему обратной связи, которая открывает доступ силового масла в один из гидроцилиндров. При этом масло под давлением насоса перепускается из одного цилиндра в другой, двигая поршень и поворачивая румпель, баллер и перо руля в нужную сторону. После этого регулировочная тяга возвращается в нулевое положение, а датчик и репитор фиксируют новое положения руля.

Чтобы давление масла в гидроцилиндрах не повышалось при ударах о перо руля сильной волны или большой льдины, гидросистема снабжена предохранительными клапанами и амортизационными пружинами.

В случае выхода из строя телемотора управление рулевой машиной можно осуществлять из румпельного отделения вручную.

При выходе из строя обоих масляных насосов переходят на ручную перекладку руля, для чего трубы гидросистемы напрямую соединяют с гидроцилиндрами, создавая в них давление вращением штурвала в посту управления.

Более подробная схема управления рулевым устройством с двухплунжерной рулевой машиной приведена на рис. 215, а ее компоновка – на рис.217.

Схема гидропривода четырех плун­жерной рулевой машины с аналогич­ным принципом действия показана на рис.216. Эти машины получили наибольшее распространение на современных судах, так как они обеспечивают наивысший коэффициент полезного действия всего рулевого устройства. В них давление рабочего масла в гидроцилиндрах непосредственно пре­образуется сначала в поступательное движение плунжера, а затем через механическую передачу - во вращательное движение баллера руля, который жестко связан с рум­пелем. Необходимое давление масла и мощность рулевой машины формируется радиально-поршневыми насосами переменной производительности, а раздачу его по цилиндрам осуществляет телемотор, который получает команду от штурвала с рулевой рубки.

Рулевое устройство служит для изменения направления движения судна или удерживать его на заданном курсе. В последнем случае задачей рулевого устройства является противодействие внешним силам, таким как ветер или течение, которые могут привести к отклонению судна от заданного курса.

Рулевые устройства известны с момента возникновения первых плавучих средств. В древности рулевые устройства представляли собой большие распашные весла, укрепленные на корме, на одном борту или на обоих бортах судна. Во времена средневековья их стали заменять шарнирным рулем, который помещался на ахтерштевне в диаметральной плоскости судна. В таком виде он и сохранился до наших дней. Рулевое устройство состоит из руля, баллера, рулевого привода, рулевой передачи, рулевой машины и поста управления (рис. 6.1).

Рулевое устройство должно иметь два привода: главный и вспомогательный.
Главный рулевой привод - это механизмы, исполнительные приводы перекладки руля, силовые агрегаты рулевого привода, а также вспомогательное оборудование и средства приложения крутящего момента к баллеру (например, румпель или сектор), необходимые для перекладки руля с целью управления судном в нормальных условиях эксплуатации.
Вспомогательный рулевой привод – это оборудование необходимое для управления судном в случае выхода из строя главного рулевого привода, за исключением румпеля, сектора или других элементов, предназначенных для той же цели.
Главный рулевой привод должен обеспечивать перекладку руля с 350 одного борта на 350 другого борта при максимальной эксплуатационной осадке и скорости переднего хода судна не более чем за 28 секунд.
Вспомогательный рулевой привод должен обеспечивать перекладку руля с 150 одного борта на 150 другого борта не более чем за 60 секунд при максимальной эксплуатационной осадке судна и скорости, равной половине его максимальной эксплуатационной скорости переднего хода.
Управление вспомогательным рулевым приводом должно быть предусмотрено из румпельного отделения. Переход с главного на вспомогательный привод должен выполняться за время, не превышающее 2 минуты.
Руль – основная часть рулевого устройства. Он располагается в кормовой части и действует только на ходу судна. Основной элемент руля – перо, которое по форме может быть плоским (пластинчатым) или обтекаемым (профилированным).
По положению пера руля относительно оси вращения баллера различают (рис. 6.2):
- обыкновенный руль – плоскость пера руля расположена за осью вращения;
- полубалансирный руль – только большая часть пера руля находится позади оси вращения, за счет чего возникает уменьшенный момент вращения при перекладке руля;
- балансирный руль – перо руля так расположено по обеим сторонам оси вращения, что при перекладке руля не возникают какие-либо значительные моменты.

В зависимости от принципа действия различают пассивные и активные рули. Пассивными называются рулевые устройства, позволяющие производить поворот судна только во время хода, точнее сказать, во время движения воды относительно корпуса судна.
Винторулевой комплекс судов не обеспечивает их необходимую маневренность при движении на малых скоростях. Поэтому на многих судах для улучшения маневренных характеристик используются средства активного управления, которые позволяют создавать силу тяги в направлениях, отличных от направления диаметральной плоскости судна. К ним относятся: активные рули, подруливающие
устройства, поворотные винтовые колонки и раздельные поворотные насадки.


Активный руль
– это руль с установленным на нем вспомогательным винтом, расположенным на задней кромке пера руля (рис. 6.3). В перо руля встроен электродвигатель, приводящий во вращение гребной винт, который для защиты от повреждений помещен в насадку. За счет поворота пера руля вместе с гребным винтом на определенный угол возникает поперечный упор, обусловливающий поворот судна. Активный руль используется на малых скоростях до 5 узлов. При маневрировании на стесненных акваториях активный руль может использоваться в качестве основного движителя, что обеспечивает высокие маневренные качества судна. При больших скоростях винт активного руля отключается, и перекладка руля осуществляется в обычном режиме.

Раздельные поворотные насадки
(рис. 6.4). Поворотная насадка – это стальное кольцо, профиль которого представляет элемент крыла. Площадь входного отверстия насадки больше площади выходного. Гребной винт располагается в наиболее узком ее сечении. Поворотная насадка устанавливается на баллере и поворачивается до 40° на каждый борт, заменяя руль. Раздельные поворотные насадки установлены на многих транспортных судах, главным образом речных и смешанного плавания, и обеспечивают их высокие маневренные характеристики.


Подруливающие устройства
(рис. 6.5). Необходимость создания эффективных средств управления носовой оконечностью судна привела к оборудованию судов подруливающими устройствами. ПУ создают силу тяги в направлении, перпендикулярном диаметральной плоскости судна независимо от работы главных движителей и рулевого устройства. Подруливающими устройствами оборудовано большое количество судов самого разного назначения. В сочетании с винтом и рулем ПУ обеспечивает высокую маневренность судна, возможность разворота на месте при отсутствии хода, отход или подход к причалу практически лагом.

В последнее время получила распространение электродвижущаяся система AZIPOD (Azimuthing Electric Propulsion Drive), которая включает в себя дизельгенератор, электромотор и винт (рис. 6.6).

Дизель-генератор, расположенный в машинном отделении судна, вырабатывает электроэнергию, которая по кабельным соединениям передается на электромотор. Элетромотор, обеспечивающий вращение винта, расположен в специальной гондоле. Винт находится на горизонтальной оси, уменьшается количество механических передач. Винторулевая колонка имеет угол разворота до 3600, что значительно повышает управляемость судна.
Достоинства AZIPOD:
– экономия времени и средств при постройке;
– великолепная маневренность;
– уменьшается расход топлива на 10 – 20 %;
– уменьшается вибрация корпуса судна;
– из-за того, что диаметр гребного винта меньше – эффект кавитации снижен;
– отсутствует эффект резонанса гребного винта.

Один из примеров использования AZIPOD – танкер двойного действия (рис.6.7), который на открытой воде двигается как обычное судно, а во льдах двигается кормой вперёд как ледокол. Для ледового плавания кормовая часть DAT оснащена ледовым подкреплением для ломки льда и AZIPOD.

На рис. 6.8. показана схема расположения приборов и пультов управления: один пульт для управления судном при движении вперед, второй пульт для управления судном при движении кормой вперед и два пульта управления на крыльях мостика.

Назначение технических средств управления

На судах ВВП и их типы.

Основные требования к технических средствам управления для судов внутреннего и смешанного (река-море) плавания определяются правилами Российского речного Регистра (РРР), Федерального органа классификации судов внутреннего и смешанного (река-море) плавания. В этих требованиях учитывается тип и класс судов.

Технических средства управления предназначены для обеспечения движения, управления и удержания судна на заданной линии пути. К ним относятся:

Система управления двигательно–движетельной установкой;

Рулевое устройство;

Якорное и швартовое устройства.

Одним из основных элементов технических средств управления является рулевое устройство.

Рулевое устройство служит для изменения направления движения судна и удержания судна на линии заданного пути.

Оно состоит:

Из органа управления (штурвал, джойстик);

Системой передачи;

Исполнительных элементов.

Управляемость судов обеспечивается с помощью исполнительных элементов рулевых устройств. В качестве исполнительных элементов рулевых устройств на судах ВВП могут применяться:

Рули различных типов;

Поворотные винтовые насадки;

Водометные движетельно-рулевые устройства.

Кроме того на некоторых типах судов могут применяться:

Подрулевающие устройства;

Крыльчатые движетельно-рулевые устройства;

Активные и фланкирующие рули.

Рули судов, их формы и типы.

Наибольшее распространение в качестве исполнительного элемента получили рули различных типов.

В состав руля может входить: перо руля, опоры, подвесы, баллер, румпель и др. вспомогательные устройства (сорлинь, гельмпорт, рудерпис).

Р у л и в зависимости от его формы и расположения оси вращения подразделяют на простые, полубалансирные и балансирные; по количеству опор – на подвесные, одноопорные и многоопорные. У простого руля все перо расположено сзади от оси баллера, у полубалансирного и балансирного рулей часть пера расположена впереди от оси баллера, образуя полубалансирную и балансирую части (рис.4.1).

По форме профиля рули подразделяются на пластичные и обтекаемые (профилированные). Наибольшее распространение на судах внутреннего плавания нашли балансирные обтекаемые прямоугольные рули.

Руль характеризуется: высотой h p – расстоянием, измеренным по оси баллера, между нижней кромкой руля и точкой пересечения оси баллера с верхней частью контура руля; длиной l p руля; смещением Δ l p части площади руля вперед относительно оси баллера (у полубалансирных рулей обычно Δ l p до 1/3 l p , у балансирных Δ l p до 1/2 l p ).

Рис.4.1 Рули

Важнейшей характеристикой пера руля является его суммарная площадь ∑S p . Фактическая площадь руля характеризуется выражением

S p ф = h p · l p (4.1)

Суммарная требуемая площадь руля, обеспечивающая управляемость судна выражается уравнением

S p т = LT (4.2)

где - коэффициент пропорциональности;

L – длина судна;

Т – наибольшая осадку судна.

Для обеспечения управляемости судна требуемая суммарная площадь руля должна быть равна фактической площади руля, т.е.

Рулевая машина обеспечивает поворот руля в соответствии с сигналом с мостика и является составной частью рулевого устройства.

Рулевое устройство состоит из четырех частей:

– системы управления,

– силового агрегата,

– рулевого привода,

Силовой агрегат и рулевой привод образуют собственно рулевую машину.

Система управления или телепередача передает с мостика сигнал на поворот руля и обеспечивает работу силового агрегата и рулевого привода до тех пор, пока не будет достигнут заданный угол поворота руля. Силовой агрегат создает усилие, необходимое для поворота руля на заданный угол. Рулевой привод – это устройство, посредством которого осуществляется движение непосредственно руля.

Рулевое устройство должно удовлетворять следующим требованиям:

– иметь два независимых средства перекладки руля (при наличии двух силовых агрегатов, вспомогательный или резервный силовой агрегат не требуется);

– мощность и вращающий момент агрегата должны быть такими, чтобы перекладка руля с 35 одного борта на 30 другого осуществлялась при максимальной скорости судна за время не превышающее 28 с;

– вспомогательный рулевой привод должен обеспечивать перекладку руля с 15 одного борта на 15 другого не более чем за 60 с при скорости переднего хода, равной половине максимальной, но не менее 7 узлов;

– рулевая машина должна быть защищена от ударных нагрузок;

– должно быть предусмотрено аварийное управление рулевой машиной из румпельного отделения;

– танкеры, имеющие валовую вместимость более 10 000 р.т, должны иметь две независимые системы управления рулевой машиной с мостика.

Рулевые машины могут иметь паровой, электрический и гидравлический привод.

На современных морских судах используются рулевые машины с гидравлическим плунжерным либо лопастным приводом.

5.10.2. Электрогидравлические рулевые машины

Электрогидравлические рулевые машины состоят из следующих основных узлов:

– гидравлического рулевого привода – устройства, поворачивающего баллер руля;

– насосного агрегата (насос и двигатель), обеспечивающего питание гидравлических рулевых приводов рабочей жидкостью;

– органов распределения рабочей жидкости и системы управления насосами и распределением рабочей жидкости;

– системы трубопроводов питания, предохранительных клапанов, компенсаторов; динамических нагрузок, ограничителей мощности и других элементов в зависимости от конструкции рулевой машины.

Гидравлические рулевые приводы – это гидродвигатели, обеспечивающие ограниченные углы поворота исполнительного вала, которым является баллер руля. Наиболее широкое распространение получили плунжерные приводы. В зависимости от значения необходимого вращающего момента применяется двух– либо четырех плунжерный привод. Принципиальная схема такого привода показана на рис. 74.

Рис. 74. Принципиальная схема плунжерного привода:

1– электродвигатель насоса, 2– насос, 3– предохранительный клапан, 4– муфта, 5– румпель, 6– цилиндр, 7– цистерна

Плунжеры движутся в гидравлических цилиндрах, поворачивая румпель шарнирной крестовины, находящейся в развилке плунжеров. Привод обслуживается двумя насосами переменной подачи. Каждый из насосов сообщается трубопроводами со всеми гидравлическими цилиндрами рулевого привода для всасывания и нагнетания масла.

Рядом с цилиндрами находится масляная цистерна, которая снабжена невозвратными клапанами для автоматического пополнения утечек масла из системы. Байпасный клапан объединен с предохранительным клапаном и открывается для перепуска масла в случае сильных ударов волны в перо руля. В этом случае плунжера смещаются, что в свою очередь, вызывает изменение подачи насоса, который нагнетает масло в соответствующий цилиндр, и перо руля возвращается в прежнее положение. Для защиты от поломки рычагов управления при ударной нагрузке используется буферная пружина. При обычных условиях эксплуатации работает один из насосов. Если требуется обеспечить ускоренную перекладку руля, оба насоса могут использоваться одновременно.

На рис. 75 показано устройство 4-х плунжерной электрогидравлической рулевой машины.

Такая машина создает больший вращающий момент и имеет повышенную надежность в случае выхода из строя различных частей установки. Каждый насос может работать на все цилиндры или на два цилиндра правого или левого борта.

Наличие блока клапанов управления, объединяющего предохранительные клапаны, запорные клапаны насосов и цилиндров, байпасные клапаны, повышает живучесть рулевой машины.

При нормальных условиях один насос может обеспечить работу всех цилиндров. В аварийной ситуации могут быть использованы два насоса с ручным управлением для работы двух плунжеров правого борта, двух – левого борта, двух носовых или двух кормовых плунжеров.

Рис. 75. 4-х плунжерная электро-гидравлическая рулевая машина:

1 ,23,25 – насосы переменной подачи, 2,9,19,22 – запорные клапаны цилиндров, 3,10,18,21 – гидравлические цилиндры с плунжерами, 4,8,17,24 – воздушные и манометровые запорные клапаны, 5,7,40,47,48 – масляные трубопроводы цилиндров,6,16,20 – электродвигатели, 11,27 – байпасные клапаны, 12,37 – соединительные звенья, 13,26 – плавающие рычаги, 14 – тяга буферной пружины, 15 – румпель, 28 – маховик местного поста управления, 29,30,31,32,33,34 – невозвратные всасывающие пополнительные клапаны, 35 – приемник телемотора, 36– соединительная тяга насосов, 38,39,49,50,51,52 – запорные клапаны насосов, 41,42,43, 44,45,46,53,54 – масляные трубопроводы между клапанами, 55 – цистерна пополнения масла.

Для того, чтобы система была готова к работе, необходимо заполнить маслом каждый цилиндр рулевого привода, затем установить на место наполнительные пробки и закрыть воздушные краны. Байпасные клапаны при этом должны быть открыты, а цистерна для пополнения заполнена. Воздушные краны на насосах оставляют открытыми до тех пор, пока вытекающее масло содержит пузырьки воздуха. Используя механизм ручного управления, насосы ставят в положение минимальной подачи и проворачивают их вручную, удаляя воздух сначала из одной а затем из другой пар цилиндров. После этого включают электродвигатель насоса и приступают к проверке рулевой машины в действии. При этом еще раз удаляют воздух из цилиндров и насосов через соответствующие краны.

В электрогидравлических рулевых машинах с роторным лопастным приводом рис. 76 лопастной ротор прочно закреплен на баллере.


Рис. 76. Лопастной электро-гидравлический привод:

а – принципиальная схема, б – разрез, 1 – электродвигатель, 2 – насосы, 3 – предохранительный клапан, 4 – корпус, 5 – баллер, 6 – ротор, 7 – масляная полость, 8 – масляная цистерна, 9 – крышка

Ротор может поворачиваться в корпусе, который крепится к судовому набору. Пространство между лопастями ротора и перемычками корпуса образуют полости, объем которых изменяется при повороте ротора. Полости уплотнены специальной набивкой. С обеих сторон поворотных лопастей подведены трубопроводы, каждый из которых имеет кольцевой коллектор. При подаче масла во все полости с левой стороны поворотных лопастей и при всасывании масла из всех полостей с правой стороны обеспечивается поворот ротора по часовой стрелке. Для поворота в противоположном направлении всасывание и нагнетание меняются местами.

Привод обычно имеет три лопасти, благодаря чему обеспечивается перекладка руля на 70 0 .

Перемычки корпуса выполняют функцию стопоров, ограничивающих поворот руля.

Понравилось? Лайкни нас на Facebook