Принцип работы системы охлаждения в авто. Просто о работе и основных компонентах системы охлаждения двигателя автомобиля. Устройство системы охлаждения двигателя

На рисунке показана жидкостная система охлаждения карбюраторного V-образного двигателя. Каждый ряд блока имеет обособленную водяную рубашку. Нагнетаемая вода водяным насосом 5 разделяется на два потока - в распределительные каналы и далее в водяную рубашку своего ряда блока, а из них - в рубашки головок цилиндров.

Рис. Система охлаждения двигателя ЗМЗ-53: а - устройство; б - сердцевина; в - жалюзи; 1 - радиатор; 2 - датчик сигнализатора перегрева жидкости; 3 - пробка радиатора; 4 - кожух; 5 - водяной насос; 6 - перепускной шланг; 7 и 12 - соответственно отводящий и подводящий шланги; 8 - термостат; 9 - датчик температуры жидкости; 10 - штуцер сливного краника; 11 - рубашка охлаждения; 13 - ремень вентилятора; 14 - сливной краник; 15 - вентилятор; 16 - жалюзи; 17 - вентилятор отопителя; 18 - отопитель кабины; 19 - пластина жалюзи; 20 - тросик

При работе системы охлаждения значительное количество жидкости подается к наиболее нагретым местам - патрубкам выпускных клапанов и гнездам искровых свечей зажигания. У карбюраторных двигателей вода из рубашек головок цилиндров предварительно проходит через водяную рубашку впускной трубы, омывает стенки и нагревает смесь, поступающую из карбюратора по внутренним каналам трубы. При этом улучшается испарение бензина.

Радиатор служит для охлаждения воды, поступающей из водяной рубашки двигателя. Радиатор состоит из верхнего и нижнего баков, сердцевины и деталей крепления. Баки и сердцевина для лучшей проводимости теплоты изготовлены из латуни.

В сердцевине размещен ряд тонких пластин, сквозь которые проходит множество вертикальных трубок, припаянных к ним. Вода, поступающая через сердцевину радиатора, разветвляется на большое число мелких струек. При таком строении сердцевины вода охлаждается интенсивнее благодаря увеличению площади соприкосновения воды со стенками трубок.

Верхний и нижний баки шлангами 7 и 12 соединены с рубашкой охлаждения двигателя. В нижем баке предусмотрен краник 14 для слива воды из радиатора. Для ее спуска из водяной рубашки в нижней части блока цилиндров также имеются краники (с обеих сторон).

В систему охлаждения воду заливают через горловину верхнего бака, закрываемую пробкой 3.

К отопителю кабины 18 горячая вода поступает от водяной рубашки головки блока и отводится трубой к водяному насосу. Количество воды, поступающей к отопителю (или температура в кабине водителя), регулируется краном.

В системе жидкостного охлаждения предусмотрено двойное регулирование теплового режима двигателя - с помощью жалюзи 16 и термостата 8. Жалюзи состоят из набора пластин 19, которые шарнирно закреплены в планке. В свою очередь, планка тягой и системой рычагов связана с рукояткой управления жалюзи. Рукоятка размещена в кабине. Створки могут располагаться вертикально или горизонтально.

Водяной насос и вентилятор объединены в одном корпусе, который через уплотнительную прокладку прикреплен к площадке на передней стенке блок-картера. В корпусе 7 насоса на шариковых подшипниках установлен валик 4. На его переднем конце с помощью ступицы закреплен шкив 2. К его торцу привернута крестовина, к которой приклепана крыльчатка 1 вентилятора. При работе двигателя шкив получает вращение от коленчатого вала через ремень. Лопасти крыльчатки 1, расположенные под углом к плоскости вращения, забирают воздух от радиатора, создавая разрежение внутри кожуха вентилятора. Благодаря этому холодный воздух проходит через сердцевину радиатора, отнимая у него теплоту.

На заднем конце валика 4 жестко посажена крыльчатка 5 центробежного водяного насоса, который представляет собой диск с равномерно расположенными на нем криволинейными лопатками. При вращении крыльчатки жидкость из подводящего патрубка 8 поступает к ее центру, захватывается лопастями и под действием центробежной силы отбрасывается к стенкам корпуса 7 и через прилив подается в водяную рубашку двигателя.

Рис. Водяной насос и вентилятор двигателя ЗИЛ-508: 1 - крыльчатка вентилятора; 2 - шкив; 3 - подшипник; 4 - валик; 5 - крыльчатка насоса; 6 - прокладка; 7 - корпус насоса; 8 - подводящий патрубок; 9 - корпус подшипников; 10 - манжета; 11 - уплотняющая шайба; 12 - обойма сальникового уплотнения

На заднем конце валика 4 также предусмотрено сальниковое уплотнение, которое не пропускает воду из водяной рубашки двигателя. Уплотнение смонтировано в цилиндрической ступице крыльчатки и застопорено в ней пружинным кольцом. Оно состоит из текстолитовой уплотняющей шайбы 11, резиновой манжеты 10 и пружины, которая прижимает шайбу к торцу корпуса подшипников. Своими выступами шайба входит в пазы крыльчатки 5 и закрепляется обоймой 12.

На двигателе автомобиля КамАЗ вентилятор расположен отдельно от водяного насоса и приводится в действие через гидравлическую муфту. Гидромуфта (рис. а) включает в себя герметический кожух В, заполненный жидкостью. В кожухе помещены два (с поперечными лопастями) сферических сосуда Д и Г, жестко соединенные с ведущим А и ведомым Б валами соответственно.

Принцип работы гидромуфты основан на действии центробежной силы жидкости. Если быстро вращать сферический сосуд Д (насосный), заполненный рабочей жидкостью, то под действием центробежной силы жидкость скользит по криволинейной поверхности этого сосуда и попадает во второй сосуд Г (турбинный), заставляя его вращаться. Потеряв энергию при ударе, жидкость снова попадает в первый сосуд, разгоняется в нем, и процесс повторяется. Таким образом, передается вращение с ведущего вала А, соединенного с одним сосудом Д, на ведомый вал Б, соединенный жестко с другим сосудом Г. Этот принцип гидродинамической передачи используется в технике при конструировании различных механизмов.

Рис. Гидромуфта: а - принцип действия; б - устройство; 1 — крышка блока цилиндров; 2 - корпус; 3 - кожух; 4 - валик привода: 5 - шкив; 6 - ступииа вентилятора; А - ведуши вал; Б — ведомый вал; В - кожух; Г, Д - сосуды; Т - турбинное колесо; Н - насосное колесо

Гидромуфта размещена в полости, образованной передней крышкой 1 блока цилиндров и корпусом 2, соединенных винтами. Гидромуфта состоит из кожуха 3, насосного Н и турбинного Г колес, ведущего А и ведомого Б валов. Кожух соединен через ведущий вал А с коленчатым валом с помощью валика привода 4. С другой стороны кожух 3 соединен с насосным колесом и шкивом 5 привода генератора и водяного насоса. Ведомый вал Б опирается на два шариковых подшипника и соединен одним концом с турбинным колесом, а другим - со ступицей 6 вентилятора.

Вентилятор двигателя расположен соосно с коленчатым валом, передний конец которого соединен шлицевым валом с ведущим валиком 4 привода гидромуфты. Поворотом рычага включателя гидромуфты можно задать один из требуемых режимов работы вентилятора: «П» - вентилятор включен постоянно, «А» - вентилятор включается автоматически, «О» - вентилятор отключен (рабочая жидкость выпущена из кожуха). На режиме «П» допустима только кратковременная работа.

Автоматическое включение вентилятора происходит при повышении температуры охлаждающей жидкости, омывающей термосиловой датчик. При температуре охлаждающей жидкости 85 °С клапан датчика открывает масляный канал в корпусе включателя и рабочая жидкость - моторное масло - поступает в рабочую полость гидромуфты из главной магистрали смазочной системы двигателя.

Термостат служит для ускорения прогрева холодного двигателя и автоматического регулирования его теплового режима в заданных пределах. Он представляет собой клапан, регулирующий количество циркулирующей жидкости через радиатор.

На изучаемых двигателях применяют одноклапанные термостаты с твердым наполнителем - церезином (нефтяным воском). Термостат состоит из корпуса 2, внутри которого помещен медный баллон 9, заполненный активной массой 8, состоящей из медного порошка, смешанного с церезином. Масса в баллоне плотно закрыта резиновой мембраной 7, на которой установлена направляющая втулка 6 с отверстием для резинового буфера 12. На последнем установлен шток 5, связанный рычагом 4 с клапаном. В исходном положении (на холодном двигателе) клапан плотно прижат к седлу (рис. б) корпуса 2 спиральной пружиной 1. Термостат установлен между патрубками 10 и 11, отводящими нагретую жидкость в верхний бак радиатора и водяной насос.

Рис. Термостат с поворотным (а-в) и простым (г) клапанами: а - устройство термостата с поворотным клапаном (карбюраторный двигатель ЗИЛ-508); б - клапан закрыт; в - клапан открыт; г - устройство термостата с простым клапаном (карбюраторный двигатель 3M3-53); 1 - спиральная пружина; 2 - корпус; 3 - клапан (заслонка); 4 - рычаг; 5 - шток; 6 - направляющая втулка; 7 - мембрана; 8 - активная масса; 9 - баллон; 10 и 11 - патрубки отвода жидкости в радиатор и водяной насос; 12 - резиновый буфер; 13 - клапан; 14 - пружина; 15 - седло корпуса; А - ход клапана

При температуре охлаждающей жидкости выше 75 °С активная масса Оплавится и расширяется, воздействуя через мембрану, буфер и шток 5 на рычаг 4, который, преодолевая силу пружины 1, начинает открывать клапан 3 (рис. в). Полностью клапан откроется при температуре охлаждающей жидкости 90 °С. В интервале температур 75…90 °С клапан термостата, изменяя свое положение, регулирует количество охлаждающей жидкости, проходящей через радиатор, и тем самым поддерживает нормальный температурный режим двигателя.

На рисунке г показан термостат с простым клапаном 13 в положении, когда он открыт полностью для прохода жидкости в радиатор, т.е. когда его ход равен расстоянию А. При температуре 90 °С, когда активная масса баллона расплавлена, клапан вместе с баллоном садится вниз, преодолевая сопротивление пружины 14. По мере остывания масса в баллоне сжимается и пружина поднимает клапан вверх. При температуре 75 °С клапан 13 прижимается к седлу 15 корпуса, закрывая выход жидкости в радиатор.

Рис. Паровоздушный клапан: а — открыт паровой клапан; б - открыт воздушный клапан; 1 и 6 - соответственно паровой и воздушный клапаны; 2 и 5 - пружины парового и воздушного клапанов; 3 - пароотводная трубка; 4 - пробка (крышка) наливной горловины радиатора

Паровоздушный клапан необходим для сообщения внутренней полости радиатора с атмосферой. Он смонтирован в пробке 4 наливной горловины радиатора. Клапан состоит из парового клапана 1 и размещенного внутри него воздушного клапана 6. Паровой клапан под действием пружины 2 плотно закрывает горловину радиатора. Если температура воды в радиаторе повышается до предельного значения (для данного двигателя), то под давлением пара паровой клапан открывается и его избыток выходит наружу.

Когда при охлаждении воды и конденсации пара в радиаторе создается разрежение, открывается воздушный клапан и в радиатор поступает атмосферный воздух. Воздушный клапан закрывается под действием пружины 5, когда давление воздуха внутри радиатора уравновешивается с атмосферным. Посредством воздушного клапана вода сливается из системы охлаждения при закрытой крышке горловины. При этом трубки радиатора предохраняются от разрушения под влиянием атмосферного давления в процессе остывания двигателя.

Для контроля за температурой охлаждающей жидкости служат сигнальная лампа и дистанционный термометр. Лампа и указатель термометра помещены на щитке приборов, а их датчики могут быть в головке цилиндров, в водоотводящей трубе, впускном трубопроводе или в верхнем баке радиатора.

Помимо главной функции отвода тепла от основных узлов двигателя автомобиля, система охлаждения решает ряд дополнительных задач. Фактически она участвует в работе , отопления салона, выхлопа и рециркуляции отработавших газов, турбонаддува и коробки передач. О том, как она устроена, а также в чем заключается принцип работы охлаждающей системы и пойдет речь далее.

Виды систем охлаждения двигателя

Регулирование температуры автомобильного двигателя может осуществляться при помощи охлаждающей жидкости (антифриза, ОЖ) и посредством циркуляции воздуха. Исходя из этого различают три вида систем:

  • Воздушная. Физически представляет собой обдув, благодаря которому происходит вытеснение горячего воздуха из подкапотного пространства в атмосферу. Воздушное охлаждение может быть естественным и принудительным (с использованием вентилятора). В силу низкой эффективности как самостоятельная система практически не применяется.
  • Жидкостная. Представляет собой систему трубчатых контуров, по которым циркулирует охлаждающая жидкость. Жидкостное охлаждение может быть принудительным (перекачка насосом), термосифонным (за счет разности в плотности нагретой и охлажденной жидкостей) и комбинированным (охлаждение головки блока цилиндров осуществляется принудительно, а остальные узлы термосифонным принципом). Такая система более эффективна в сравнении с воздушной, но при определенных режимах работы (длительный простой с включенным двигателем, повышенные температуры окружающей среды) может быть недостаточной для качественного охлаждения.
  • Комбинированная. Представляет собой использование и воздушного обдува, и жидкостных контуров.

Системы охлаждения на основе жидкости также разделяются на открытые и закрытые. Первые имеют сообщение с атмосферой при помощи пароотводной трубки, а во вторых жидкость полностью изолирована от окружающей среды. В закрытых системах давление антифриза больше, а следовательно, выше и температура кипения. Это позволяет использовать их при высоких температурах нагрева жидкости (до 120°C).

Устройство и принцип работы системы охлаждения ДВС

Система охлаждения двигателя

Наиболее популярной в современных автомобилях является комбинированная система охлаждения двигателя с принудительной циркуляцией воздуха и жидкости. Она состоит из следующих элементов:

  • Радиатор системы охлаждения.
  • Малый и большой охлаждающие контуры.
  • Рубашка системы охлаждения (система каналов в блоке цилиндров).
  • Датчик температуры.
  • Термостат.
  • Расширительный бачок.
  • Насос (помпа).
  • Радиатор печки.
  • Масляный радиатор (опционально).
  • Радиатор (опционально).

В момент запуска двигателя насос начинает перекачку жидкости по малому контуру. Когда двигатель нагревается до рабочей температуры, срабатывает и открывает второй (большой) контур охлаждения. Проходя через узлы мотора, охлаждающая жидкость нагревается и расширяется. При увеличении температуры часть жидкости поступает в расширительный бачок. Это позволяет компенсировать излишний объем, независимо от того, какое давление установилось в системе.


Большой и малый круги циркуляции ОЖ

Проходя через участок радиатора системы охлаждения, антифриз вновь остывает и возвращается на новый цикл. Если этот режим снижения температуры оказывается недостаточным, срабатывает температурный датчик, передающий сигнал блоку управления двигателя и запускающий вентилятор воздушного охлаждения. Если и его оказывается недостаточно, на приборную панель (индикатор) поступает сигнал о перегреве двигателя.

Масляный радиатор и радиатор рециркуляции отработавших газов может присутствовать не во всех системах охлаждения. Они необходимы для синхронного снижения температуры смазки и выхлопа, что делает эксплуатацию автомобиля более безопасной и экономичной. В автомобилях с также может присутствовать еще один охлаждающий контур для снижения температуры воздуха наддува.

Как устроен радиатор охлаждения двигателя


Устройство радиатора системы охлаждения ДВС

Радиатор системы охлаждения ДВС состоит из следующих элементов:

  • Сердцевина. Она может быть трубчатой (вертикальные трубки овального или круглого сечения, объединенные тонкими горизонтальными пластинами), пластинчатой (изогнутые пары пластин, спаянные по краям) и сотовой (спаянные трубки с сечением в виде правильного шестиугольника).
  • Верхний бачок. Оснащен заливной горловиной с герметичной пробкой, а также патрубком для установки шланга, подводящего антифриз. В горловине выполнено отверстие для установки пароотводящей трубки. Последняя имеет паровой клапан, который открывается в случае закипания.
  • Воздушный клапан. Он необходим для наполнения радиатора воздухом после остановки двигателя. Когда охлаждающая жидкость полностью остывает, без подачи дополнительного объема воздуха в системе может возникнуть сильное разрежение, провоцирующее сдавливание трубок.
  • Нижний бачок. Оснащен патрубком для крепления шланга отвода жидкости.
  • Крепления.

Принцип работы радиатора основан на многоуровневой циркуляции воздуха в его сердцевине, что делает снижение температуры охлаждающей жидкости, проходящей через него, более интенсивным.

Наиболее эффективными являются радиаторы пластинчатого типа, но они подвержены быстрому загрязнению, а потому самой популярной конструкцией стали трубчатые.

Особенности работы датчика температуры ОЖ


Датчик температуры системы охлаждения

Температурный датчик позволяет контролировать состояние системы. Определить, где находится датчик температуры охлаждающей жидкости просто: как правило, он расположен в канале головки блока цилиндров. Он представляет собой терморезистор в герметичном корпусе, который может быть изготовлен из бронзы, пластика и латуни. На корпусе имеется резьба для установки в канал.

Принцип работы датчика основан на следующем эффекте: при повышении температуры сопротивление чувствительного элемента снижается, а при ее уменьшении увеличивается. Показатель сопротивления передается на электронный блок управления двигателем. Чтобы при этом данные состояния охлаждающей жидкости были точными, датчик должен быть полностью погружен в нее. При температуре 100°C сопротивление датчика температуры охлаждающей жидкости должно быть порядка 177 Ом. С учетом погрешностей измерения допускается показатель сопротивления 190 Ом. Если же отклонения больше допустимых, датчик необходимо заменить.

В некоторых моделях автомобилей может быть предусмотрено два датчика температуры. Один отвечает исключительно за включение вентилятора радиатора, а второй представляет собой датчик указателя текущей температуры охлаждающей жидкости.

Что используют в качестве охлаждающих жидкостей

Расширительный бачок системы охлаждения

В роли рабочей жидкости в системах охлаждения изначально применялась дистиллированная или деионизированная вода. Однако для современных двигателей она не обеспечивает нужный диапазон рабочих температур. Помимо этого, она склонна к коррозионной активности в отношении металлов, что снижает срок эксплуатации системы охлаждения. Для устранения этих недостатков в качестве охлаждающей жидкости сегодня применяются составы со специальными присадками (этиленгликоль, ингибиторы коррозии), что повышает характеристики всей системы. Чаще всего используется антифриз, который имеет более низкий порог замерзания.

При возникновении ситуации, когда требуется экстренный долив охлаждающей жидкости, можно использовать обычную чистую воду. Однако для корректной работы системы при первой возможности такой раствор необходимо заменить на качественный антифриз.

Замена охлаждающей жидкости проводится каждые 60-100 тысяч километров пробега. В охлажденном состоянии (при выключенном двигателе) ее количество должно быть на уровне нижнего края патрубка расширительного бачка охлаждающей системы. Для удобства на нем выполнены отметки «Min» и «Max». Когда количество жидкости ниже минимальной отметки — выполняют долив. Если после работы уровень вновь упал — это свидетельствует о разгерметизации системы.

Значимость системы охлаждения двигателя не вызывает сомнений. А потому стоит регулярно проводить профилактический осмотр ее основных узлов. Это позволит избежать перегрева двигателя и возникновения критических поломок.

Двигатель внутреннего сгорания (ДВС) каждого транспортного средства во время работы испытывает значительные нагрузки. Для обеспечения его корректной работы и сохранности отдельных механизмов и их деталей немаловажным моментом является достаточное охлаждение мотора.

Существуют два основных вида систем охлаждения ДВС: воздушное и жидкостное. Воздушный тип в современном автомобилестроении используется только в спортивных машинах, как дополнение к жидкостному, поскольку польза от одного только потока воздуха для обеспечения нормальной рабочей температуры агрегата ничтожно мала.

Первые транспортные средства автопроизводителя ЗАЗ были снабжены исключительно воздушным охлаждением. Несмотря на различные инженерные идеи, двигателя «Запорожцев» в жаркие летние дни часто перегревались.

Общая картина системы охлаждения

Независимо от того какой тип двигателя установлен в автомобиле и какая марка машины, система охлаждения имеет в целом схожее устройство. Обеспечение нормальной рабочей температуры силового агрегата достигается путём циркуляции охлаждающей жидкости по каналам системы. Таким образом, каждый узел ДВС охлаждается в равной степени независимо от температурной нагрузки.

Гидравлическая система охлаждения также может быть нескольких разновидностей:

  • Термосифонная - циркуляция осуществляется благодаря разнице в плотности горячей и холодной жидкости. Таким образом, охлаждённый антифриз вытесняет из силового агрегата горячую жидкость, отправляя её в каналы радиатора.
  • Принудительная - циркуляция охлаждающей жидкости происходит благодаря насосу.
  • Комбинированная - отвод тепла от большей части двигателя происходит принудительным путём, а отдельные участки охлаждаются термосифонным способом.

Принудительная система, пожалуй, наиболее эффективна и используется в большинстве современных легковых автомобилей.

Основные элементы

Система охлаждения двигателя содержит следующие элементы:

  • Рубашка охлаждения или «водяная рубашка». Представляет собой систему каналов проходящих в блоке цилиндров.
  • Радиатор охлаждения - устройство для охлаждения самой жидкости. Состоит из каналов изогнутых труб и металлических рёбер для лучшей теплоотдачи. Охлаждение происходит как благодаря встречному потоку воздуха, так и внутренним вентилятором.
  • Вентилятор. Элемент системы охлаждения, предназначенный для усиления потока воздуха. На современных автомобилях он включается только при срабатывании температурного датчика, когда радиатор неспособен полноценно охладить жидкость встречным потоком воздуха. В старых моделях автомобилей вентилятор работает постоянно. Вращение на него передаётся от коленчатого вала через ременной привод.
  • Насос или помпа. Обеспечивает циркуляцию охлаждающей жидкости по каналам системы. Приводится в действие с помощью ременного или шестерёнчатого привода от коленчатого вала. Как правило, мощные двигателя с прямым впрыском топлива комплектуются дополнительным насосом.
  • Термостат. Важнейшая деталь системы охлаждения, контролирующая циркуляцию по большому кругу охлаждения. Основной задачей является обеспечение нормального температурного режима при эксплуатации транспортного средства. Обычно установлен на стыке входного патрубка и рубашки охлаждения.
  • Расширительный бачок - ёмкость необходимая для сбора избытка охлаждающей жидкости возникающего в процессе её нагревания.
  • Радиатор отопления или печка. По своему устройству похож на радиатор охлаждения в меньшем размере. Однако, используется исключительно для обогрева салона автомобиля в зимний период и непосредственной роли в охлаждении ДВС не играет.

Круги циркуляции

Система охлаждения в автомобиле имеет два круга циркуляции: большой и малый. Основным считается именно малый, поскольку при запуске агрегата по нему сразу же начинает циркулировать охлаждающая жидкость. В работе малого круга задействованы только каналы блока цилиндров, помпа, а также радиатор отопления салона. Циркуляция проходит по малому кругу до тех пор, пока ДВС не достигнет нормальной рабочей температуры, после чего срабатывает термостат и открывает большой круг. Благодаря такой системе прогрев двигателя значительно сокращается, а в зимнюю пору система не столько охлаждает агрегат, сколько поддерживает его нормальный температурный режим.

В работе большого круга задействованы вентилятор, радиатор охлаждения, впускные и выпускные каналы, термостат, расширительный бочок, а также те элементы, которые принимают участие в функционировании малого круга. Внешний круг, он же большой круг, начинает работать, когда температура охлаждающей жидкости достигает 80-90 о С, и обеспечивает её охлаждение.

Принцип работы системы

В целом работа системы довольно проста. Приведённый в действие гидравлический насос обеспечивает циркуляцию охлаждающей жидкости по рубашке блока цилиндров. Скорость циркуляции зависит от количества оборотов коленчатого вала ДВС.

Антифриз, проходящий по каналам в блоке цилиндров, отводит излишек тепла от агрегата и поступает обратно в приёмный отсек помпы, минуя термостат. Когда температура охлаждающей жидкости достигает 80-90 о С, термостат открывает большой круг циркуляции, блокируя малый. Таким образом, жидкость после блока цилиндров направляется в радиатор охлаждения, где её температура снижается благодаря встречному потоку воздуха и вентилятору. Далее, процесс повторяется.

Возможные неполадки и их устранение

Несмотря на простоту конструкции, система охлаждения силового агрегата способна дать сбой во время эксплуатации транспортного средства. В связи с этим двигатель будет работать в повышенном температурном режиме, из-за чего ресурс его деталей значительно снизится. Причины некорректной работы охлаждения могут быть совершенно разные.

Износ термостата

Наиболее часто неполадки в системе связаны именно с клапаном переключающим круги циркуляции, он же термостат. Если деталь заклинивает в одном положении или клапан перекрывает каналы кругов циркуляции неплотно, прогрев двигателя может занять значительно больше времени или наоборот, агрегат начнёт сильно перегреваться без достаточного охлаждения.

Принцип работы термостата

Как правило, поломка термостата связана с нарушением его целостности. Основой клапана является термический воск, который при нагревании расширяется и сдавливает мембрану, открывающую большой круг циркуляции. Если воск по какой-либо причине вытек из детали, то клапан перестанет функционировать и антифриз не сможет полноценно охлаждаться. Также причиной износа может стать несвоевременная замена охлаждающей жидкости или её низкое качество. Коррозия пружины термостата вызывает заклинивание детали в открытом или реже закрытом положении. В обоих случаях двигатель не сможет работать в нормальном температурном диапазоне - жидкость будет либо постоянно охлаждаться, даже когда в этом нет необходимости, либо наоборот, всё время будет горячей.

Определить износ довольно просто и это можно сделать двумя способами. Проще всего проверку произвести несъёмным методом. Для этого сразу после запуска двигателя следует потрогать входной патрубок радиатора. Если он стал тёплым почти сразу после пуска ДВС, это говорит о том, что термостат заклинило в открытом положении. И наоборот, когда патрубок остаётся холодным, даже если показатель температуры находится в пиковом положении, это свидетельствует о неспособности термостата открываться.

Более точно удостовериться в том, что причина некорректной работы системы охлаждения заключается именно в неисправности термостата можно путём его демонтажа. Снятый клапан кладётся в ёмкость с водой и подвергается нагреву. Когда температура воды достигнет 90 о С, исправный клапан обязательно должен сработать - шток термостата сместится. Если этого не происходит, можно с уверенностью считать деталь неисправной.

Вышедший из строя термостат не подлежит ремонту, а требует обязательной замены. Его стоимость для большинства автомобилей редко превышает 1000 рублей. Клапан вполне можно заменить самостоятельно, без посещения автосервиса.

Неполадки гидравлического насоса

Одной из причин перегрева силового агрегата машины может стать неисправность помпы системы охлаждения. Чаще всего проблема заключается в том, что приводной ремень гидронасоса оборвался либо его натяг слишком слабый. В таком случае помпа перестанет качать антифриз, либо будет это делать не полноценно. Проверить это довольно просто, стоит лишь завезти двигатель и пронаблюдать за поведением приводного ремня. В случае если он работает с проскоками натяг следует увеличить или вовсе заменить ремень на новый. Наиболее часто это решает проблему.

Возникают ситуации, когда неполадка кроется в самой помпе: износ крыльчатки, подшипника, иногда возможна даже трещина вала. Кроме всего прочего, стыки соединения патрубков с помпой могут быть не герметичны, и создаваемое насосом давление спровоцирует протечку охлаждающей жидкости. Диагностировать протечку довольно просто, необходимо на полу под двигателем положить листы белой бумаги на несколько часов. Если на ней будут видны даже небольшие пятна голубого или зеленоватого цвета, это свидетельствует об износе прокладок помпы.

Проверить работоспособность самого насоса можно зажав пальцами верхний шланг радиатора на несколько секунд при работающем агрегате. Исправная помпа создаст сильное давление и после отпускания шланга появится ощущение, что жидкость быстро побежала по магистрали. Также стоит помнить о том, что повышенная шумность работы ДВС и люфт шкива помпы говорят об износе подшипника. Обычно его износ связан с просачиванием жидкости через сальник, которая смывает смазку с подшипника.

Насос охлаждающей жидкости в отличие от термостата можно заменить частично, но нередко автовладельцы предпочитают полноценно менять механизм.

Замена насоса:

  1. В первую очередь необходимо отключить массу автомобиля от аккумулятора, а поршень первого цилиндра должен находиться в верхней мёртвой точке. Произвести демонтаж ролика для натяга ремня и снять шкив распредвала.
  2. Далее, следует слить охлаждающую жидкость с нижней пробки в радиаторе.
  3. Открутив крепёжные болты помпы её нужно отсоединить от блока цилиндров.
  4. Оценив визуально снятый механизм важно определить его износ. Если крыльчатка, сальник и приводная шестерня имеют повреждения помпу лучше заменить полностью.
  5. Новый механизм должен устанавливаться с новой прокладкой, поскольку прежняя может иметь даже мелкие повреждения, которые впоследствии приведут к утечке охлаждающей жидкости. Помпа устанавливается таким образом, чтобы номер, указанный на корпусе, смотрел вверх.
  6. Дальнейшая сборка проводится в обратном порядки разборки. Охлаждающую жидкость лучше залить новую, но можно использовать и ту, которая была, если её ресурс ещё не исчерпан.

Проблемы с радиатором и вентилятором

Недостаточное охлаждение двигателя может быть связано с проблемами работы радиатора и вентилятора. В первую очередь стоит помнить, что слишком сильно забитый пылью и насекомыми радиатор неспособен полноценно охлаждаться как встречным потоком воздуха, так и вентилятором. Нередко его чистка решает проблему с охлаждением.

Устройство «классического» радиатора охлаждения двигателя. Во многих современных двигателях, охлаждающая жидкость заливается не через горловину радиатора, а в расширительный бачок

И всё же, возможны и более серьёзные ситуации - трещины радиатора, которые могут возникнуть, как при ДТП, так и в результате коррозии. Радиатор в большинстве случаев можно восстановить. Латунные и медные ремонтируются с помощью пайки, а алюминиевые специальными герметиками.

Перед началом пайки места повреждения тщательно зачищаются наждачной шкуркой, до появления металлического блеска. После, трещина обрабатывается паяльным флюсом и с помощью мощного паяльника наносится равномерный слой припоя (см. видео).

Алюминиевый радиатор запаять не получиться, однако для их ремонта предлагаются специальные герметики или же можно использовать обычную «холодную сварку». Перед началом заделывания трещин важно хорошо зачистить дефектные места. Клеящая масса хорошо разминается до однородного состояния и наносится на проблемный участок. Стоит помнить о том, что эксплуатировать автомобиль можно только на следующие сутки после ремонта – эпоксидный клей высыхает довольно долго.

Что касается вентилятора охлаждения, его поломка может быть связана с обрывом электропроводки или нарушением привода от коленчатого вала, если вращение передаётся от силового агрегата.

В первом случае, стоит визуально оценить состояние проводов идущих к мотору вентилятора, при обнаружении обрыва нужно заново соединить повреждённые контакты. Если состояние проводов нормальное, а вентилятор всё равно не работает, возможно, поломался сам двигатель или датчик, отвечающий за его своевременное включение. При этом лучше обратиться в автосервис, где определят причину, по которой вентилятор не включается. При проблемах с датчиком обдув может как беспрерывно, так и не включаться вовсе.

В автомобилях, где вентилятор начинает вращаться при передаче крутящего момента от двигателя, поломка чаще всего связана с обрывом приводного ремня. Его замена довольно проста: необходимо ослабить натяг шкива и поставить новый ремень.

Более подробно об устройстве и ремонте вентилятора охлаждения .

Промывка системы охлаждения и замена жидкости

Гидравлическая система охлаждения требует своевременного промывания магистралей, в противном случае на стенках каналов может образоваться коррозия, солевые отложения, и другие загрязнения.

Причины засорения

Основной причиной загрязнения системы является использование в качестве охлаждающей жидкости обычной воды. Проточная вода из крана имеет в составе большое количество солей, создаёт накипь и ржавчину на стенках магистралей. Использование дистиллированной воды менее пагубно, но полноценное охлаждение в жаркий период она не способна обеспечить. Кроме того, зимой при минусовой темпе вода замёрзнет и расширяясь может нарушить целостность отдельных деталей и соединений.

Применение качественного антифриза или тосола более целесообразно. Специальные вещества для охлаждения имеют значительный ресурс и не замерзают даже при очень низких температурах. Однако присадки содержащиеся в составе, с течением времени начинают выпадать в осадок засоряя систему.

Процесс промывки

В первую очередь, перед промывкой сливается вся охлаждающая жидкость через выпускную пробку на радиаторе, расположенную в самом низу, и на блоке цилиндров для удаления остатков.

Важно помнить, что слив жидкости должен проводиться только на холодном двигателе!

После слива пробки заново закручиваются и в расширительный бачок заливается вода с лимонной кислотой или лучше специальная очищающая жидкость.

Далее, двигатель запускается и работает в холостом режиме на протяжении 15 минут. При этом следует проследить за тем, чтобы открылся большой круг циркуляции. Также при промывке не стоит забывать о том, что салонная печка должна работать в режиме максимального обогрева. Когда агрегат остыл жидкость можно слить, открыв пробки радиатора и блока цилиндров. Этот процесс рекомендуется повторять до тех пор, пока при сливе не будет вытекать чистая жидкость без видимых загрязнений.

Залив новой охлаждающей жидкости можно проводить сразу же после окончания промывки. Наливать тосол или антифриз в расширительный бочок следует аккуратно и медленно во избежание образования воздушных пробок в системе.

Когда бачок заполниться почти полностью его нужно закрыть и запустить ДВС на несколько минут чтобы жидкость равномерно распространилась по системе. Далее, после отключения агрегата, тосол или антифриз доливаются до уровня между отметками максимума и минимума на бочке.

В заключение стоит сказать, что принципиальной разницы в использовании тосола или антифриза нет. Однако во многих странах мира автопроизводители давно перестали использовать тосол, поскольку его эффективность несколько ниже. Современный антифриз изготавливается с применением новейших технологий и в большей степени защищает двигатель от перегрева, а магистрали системы охлаждения от загрязнения.

Рабочие процессы автомобильного двигателя проходят при высоких температурах, поэтому для обеспечения его работоспособности в течение длительного времени необходимо отводить лишнее тепло. Эту функцию обеспечивает система охлаждения (СО). В холодное время года за счет этого тепла производится обогрев салона.

В автомобилях, используемых турбонаддув, в функцию системы охлаждения входит понижение температуры воздуха, подаваемого в камеру сгорания. Дополнительно в один из кругов с системы охлаждения некоторых моделей автомобилей, оснащенных автоматической коробкой передач (АКПП), включается охлаждение масла в АКПП.

В автомобилях устанавливается два основных типа СО: водяной и воздушный. Принцип работы системы охлаждения двигателя с водяным охлаждением заключается в нагреве жидкости от силовой установки или других узлов и отдачи такого тепла в атмосферу через радиатор. В воздушной системе в качестве рабочего охладителя используется воздух. В обоих вариантах есть свои достоинства и недостатки.

Однако, большее распространение получила система охлаждения с циркуляцией жидкости.

Воздушная СО

Воздушное охлаждение

К основным достоинствам этой компоновки можно отнести простоту конструкции и обслуживания системы. Такая СО практически не увеличивает массу силового агрегата, а также не капризна к изменениям температуры окружающего воздуха. К негативу относится существенный отбор мощности мотора приводом вентилятора, повышенный уровень шума при работе, плохо сбалансированный отвод тепла от отдельных узлов, невозможность использования блочной системы двигателя, невозможность аккумулирования отводимого тепла для дальнейшего использования, например, обогрева салона.

Жидкостная СО

Охлаждение жидкостью

Система с применением отвода тепла с помощью специальной жидкости благодаря своей конструкции может эффективно отводить лишнее тепло от механизмов и отдельных деталей конструкции. В отличие от воздушной, устройство системы охлаждения двигателя с жидкостью способствует более быстрому набору рабочей температуру при запуске. Также моторы с антифризами работают существенно тише и подвержены меньшей детонации.

Элементы системы охлаждения

Рассмотрим подробнее, как работает система охлаждения двигателя на современных авто. Существенных различий между бензиновыми и дизельными моторами в этом плане нет.

В качестве «рубашки» для охлаждения мотора выступают конструкционные полости блока цилиндров. Они располагаются вокруг зон, из которых требуется отводить тепло. Для более быстрого отвода установлен радиатор, состоящий из изогнутых медных или алюминиевых трубок. Большое количество дополнительных ребер ускоряют процесс теплообмена. Такие ребра повышают охлаждающую плоскость.

Перед радиатором ставится нагнетающий воздух вентилятор. Приток более холодных потоков начинается после замыкания электромагнитной муфты. Она включается при достижении фиксированных температурных значений.

Работа термостата

Непрерывность циркуляции охлаждающей жидкости обеспечивается работой центробежного насоса. Ременная или шестеренчатая передача для него получает вращение от силовой установки.

Регулировкой направлений потоков занимается термостат.

Если температура охлаждающей жидкости не высокая, то циркуляция проходит по малому кругу, без включения в него радиатора. Если же допустимый тепловой режим превышен, то термостат пускает поток по большому кругу с участием радиатора.

Для закрытых гидравлических систем свойственно использование расширительных баков. Такой бачок предусмотрен и в СО автомобиля.

Циркуляция охлаждающей жидкости

Прогрев салона выполняется с помощью радиатора отопителя. Теплый воздух в данном случае не уходит в атмосферу, а запускается внутрь авто, создавая комфорт водителю и пассажирам в холодное время года. Для большей эффективности такой элемент устанавливается практически на выходе жидкости от блока цилиндров.

Водитель получает информацию о состоянии системы охлаждения с помощью температурного датчика. Сигналы также идут на блок управления. Он может самостоятельно подключать или выключать исполнительные приборы для соблюдения баланса в системе.

Работа системы

В качестве охлаждающих жидкостей применяются антифризы с множеством присадок, в том числе и антикоррозионными. Они помогают увеличить долговечность узлов и деталей, используемых в СО. Такую жидкость принудительно прокачивается по системе центробежным насосом. Начинается движение от блока цилиндров, наиболее горячей точки.

Вначале происходит движение по малому кругу с закрытым термостатом без захода в радиатор, ведь еще не набрана даже рабочая температура для мотора. После выхода в рабочий режим циркуляция происходит по большому кругу, где радиатор может охлаждаться встречным потоком или с помощью подключаемого вентилятора. После этого жидкость возвращается в «рубашку» вокруг блока цилиндров.

Есть автомобили с использованием двух контуров охлаждения.

Первый понижает температуру мотора, а второй заботиться о надувочном воздухе, охлаждая его для образования топливной смеси.

Приветствую всех! Любой автолюбитель прекрасно осведомлен, что транспортное средство, оснащенное двигателем внутреннего сгорания не может функционировать без ряда систем и конструкций. Возьмем к примеру, систему охлаждения двигателя – это уникальная совокупность деталей и узлов, которая призвана регулировать теплообмен силового агрегата. Давайте попробуем разобраться в этом вопросе детальнее.

Итак, функции данной системы можно свести к следующему:

  • принудительный отвод излишнего тепла;
  • поддержание оптимального температурного режима;
  • ускоренный , благодаря чему его работа становится эффективнее;
  • охлаждение нагретых выпускных газов;
  • снижение температуры воздуха для турбонаддува;
  • подогрев воздуха внутри салона.

Чаще всего система охлаждения бывает жидкостного принципа действия - это предполагает рабочую жидкость или просто воду, которая нужна для отведения лишнего тепла. В качестве такой жидкости сейчас используются различные антифризы и тосолы (разновидность антифриза). Вода применяется гораздо реже по причине замерзания в морозную погоду. Бывают еще воздушные системы - достаточно вспомнить автомобили «Запорожец» с постоянной проблемой перегрева движка летом или при движении в горной местности. Но они с успехом продолжают применяться на мотоциклах, скутерах, мопедах и других видах транспорта.

Составляющие и их предназначение

Поскольку именно жидкостная конструкция является наиболее популярной, то остановимся на рассмотрении именно ее компонентов. В стандартном комплекте обязательно встречаются следующие:


В качестве основной рабочей жидкости может заливаться как антифриз, так и тосол. О том можно ли смешивать антифриз различных цветов читайте .

О принципе работы системы

Коснемся этого вопроса поверхностно, поскольку более подробно он описывается в материале . Теплообмен осуществляется антифризом, который циркулирует по всей системе под давлением. Оно создается работой водяного насоса.

Когда мотор еще холодный, то движение антифриза происходит по малому кругу. В этом процессе еще не принимает участия радиатор. Именно таким образом удается быстрее достичь требуемого температурного режима для силового агрегата. Когда температура достигает нужной точки, открывается термостат, начиная движение антифриза по большому кругу с заходом в радиатор.

Процесс охлаждения становится более интенсивным, потому что принимает участие та рабочая жидкость, которая находится в радиаторе и ранее не была использована. Для снижения температуры в самом радиаторе применяется атмосферный воздух из окружающей среды.

О неисправностях системы

Этот подраздел необходим для того, чтобы водители знали, с чем им возможно придется столкнуться в дороге и были потенциально готовы к устранению неполадок. Самой распространенной является подтекание рабочей жидкости из системы. Обычно шланги и патрубки в ходе эксплуатации утрачивают свою эластичность и не могут обеспечить прежней герметичности.

Создается воздушная пробка, и антифриз начинает покидать систему в наиболее слабом месте. Подтверждением тому выступают пятна на асфальте после стоянки транспортного средства. Необходимо безотлагательно проверить места соединений, а также следить за уровнем в расширительном бачке. Если ремонт недоступен какое-то время, можно воспользоваться доливкой тосола (для этого в продаже имеются 1‑литровые емкости).

Еще один печально известный вариант - заклинивание термостата из-за его физического срабатывания. Если жидкость будет проходить лишь по малому кругу, то это приведет к перегреву мотора со всеми вытекающими последствиями. То же самое касается разгерметизации радиатора или отложение солей, которые нарушают отвод излишнего объема тепла.

Одним из самых дорогостоящих является выход из строя помпы охлаждения (водяного насоса). Свидетельством тому является характерный свистящий звук подшипника насоса. Решение только одно - замена данного узла новым.

Уберечь от появления солевых отложений поможет , к которой периодически прибегают опытные автолюбители. Это вполне реально выполнить самостоятельно, используя специально предназначенные средства. Сначала мотору дают остыть, затем удаляют весь объем рабочей жидкости из системы. После заливки можно проехать в течение 1–2 тысяч километров - за это время нагары и отложения отмываются специальными активными компонентами.

Понравилось? Лайкни нас на Facebook