Как называется часть машины где. Автозапчасти от А до Я: Устройство автомобилей для новичков

УЧЕБНОЕ ПОСОБИЕ

НЕКОММЕРЧЕСКОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ "РУССКАЯ ТЕХНИЧЕСКАЯ ШКОЛА"

"УСТРОЙСТВО АВТОМОБИЛЯ"

"ОБЩИЕ СВЕДЕНИЯ ОБ УСТРОЙСТВЕ АВТОМОБИЛЯ"

Автомобиль состоит из трёх основных частей:
1) кузова;
2) шасси;
3) двигателя.
Основные части автомобиля, в свою очередь состоят из узлов и агрегатов. Узлы и агрегаты собраны из деталей.
Общая компоновка легкового автомобиля безрамной конструкции с приводом на задние колёса показана на рис. 1.1.

Компоновку автомобиля рамной конструкции можно посмотреть .

1. КУЗОВ

Кузова легковых автомобилей

по большей части имеют несущую конструкцию, которая предполагает крепление основных узлов и агрегатов непосредственно к его корпусу. Немногим реже встречаются легковые автомобили, имеющие кузов с несущим основанием, подрамником (передним и/или задним) или рамную конструкцию.

Кузов несущей конструкции

получил распространение с 50-х годов прошлого столетия.
Корпус несущего кузова (рис. 1.2.) - объемный, из листового металла толщиной 0,5 –2,0 мм, представляет собой жесткую сварную конструкцию, состоящую из отдельных, предварительно собранных узлов: 1) левой и правой боковин со стойками дверей и задними крыльями; 2) крыши; 3) передних крыльев и 4) основания (пола) с передней и задней частями корпуса.

Узлы собраны из кузовных элементов (деталей).
Принята классификация, где все элементы кузова подразделяются на несущие первичные , несущие вторичные и детали облицовки .

К первичным несущим элементам и узлам кузова относятся главные лонжероны, основной поперечный лонжерон, стойки дверей и места креплений (двигателя, КП, подвесок, амортизационных стоек, опор педали тормоза, дверных петель и замков, буксирного устройства).
Вторичными несущими элементами и узлами кузова считаются малые параллельные, продольные и поперечные лонжероны, диагональные полые распорки, надколёсные арки, пол кузова (включая полые профили), крылья (если они приварены к корпусу), наружные декоративные панели (если они приварены и если на них установлены приборы сигнализации и освещения).
К деталям облицовки относятся передняя и задняя панели, крылья (если они соединены с кузовом при помощи резьбовых соединений), капот, крышка багажника, пол багажника (если он не является местом крепления буксирного устройства).

Большинство автомобилей имеет несущие кузова бескаркасной конструкции . Такой кузов обычно имеет стальной или полиметаллический неразъёмный корпус, к которому прикреплены капот двигателя, крышка багажника, двери, крылья и детали декоративного оформления (облицовка радиатора, передний и задний бамперы, накладки и т.п.). В двухобъёмных кузовах (универсал, хэтчбек) крышкой багажника служит задняя дверь. Такие кузова имеют относительно меньшую жёсткость, большие размеры и сложность пространственных форм деталей.

Жёсткость несущего кузова

обеспечивается образованием специальных профилей из штампованных деталей, которые при соединении создают закрытые коробчатые сечения.
Элементы несущего кузова типа «седан» можно посмотреть на рисунке 1.3.

Рисунок 1.3

Долговечность кузова

зависит от его конструкции и условий эксплуатации и составляет 5 – 10 лет и более, до наступления предельного состояния.
Под предельным состоянием кузова понимается состояние, при котором дальнейшая эксплуатация кузова недопустима по условиям безопасности, а восстановление технически невозможно или экономически неоправданно.

Тип кузова

определяется числом функциональных отсеков (объёмов), отделённых друг от друга стационарными перегородками (панелями), и конструктивным исполнением. Изготовителями выпускаются автомобили с трёх, двух и однообъёмными кузовами.

Трёхобъёмный кузов имеет в своём составе моторный отсек, салон и багажное отделение (например, лимузин, купе, седан, кабриолет, хардтоп).

Двухобъёмный кузов имеет моторный отсек и пространственный объём, объединяющий салон с багажным отделением, расположенным в задней части кузова (например, универсал, комби, фастбек, хэтчбек).

В однообъёмном кузове моторный отсек, салон и багажник объединены в одно пространство (например, минивэны с центральным расположением силового агрегата, пассажирские фургоны типа «буханка»).

Кузов может быть открытым или закрытым .
Открытый тип кузова имеет съёмную крышу или складывающийся верх, выполненный из матерчатого или пластикового тента (например, кабриолет, родстер, фаэтон, ландо).

Грузовые типы кузовов легковых автомобилей также могут быть открытыми – «пикап», или закрытыми – «фургон». Грузовая часть кузова таких автомобилей отделена от водителя и пассажиров стационарной перегородкой.

Краткий обзор некоторых типов кузовов.

Лимузин

(от лат. limes – закрытый, ограниченный) – трёхобъёмный (на базе седана), или двухобъёмный (на базе универсала) кузов, со стеклянной перегородкой между водителем и пассажирами, закрытого типа, но иногда со сдвигающейся крышей. Кузовом комплектуются автомобили представительского класса;

Седан

закрытый кузов легкового автомобиля. В классическом исполнении имеет четыре двери, центральную стойку и три чётко выраженных объёма - моторный отсек, пассажирский салон и багажник. Багажник структурно отделён от пассажирского салона;

Купе

(от фр. coupes – укороченный, купированный) – закрытый кузов легкового автомобиля. В классическом исполнении имеет три чётко выраженных объёма - моторный отсек, пассажирский салон и багажник. Багажник структурно отделён от пассажирского салона. От седана отличается меньшим объёмом пассажирского отделения (иногда, только для одного переднего пассажира и водителя) и двухдверным исполнением;

Хетчбек

(от англ. hatchback от hatch - люк и back - сзади) – закрытый двухобъёмный кузов с укороченным задним свесом, где пассажирский салон объединён с багажным отсеком. Крыша салона продлена до заднего габарита и в задней части, как правило, скошена. Имеет три или пять дверей. Одна из дверей – задняя, служит для доступа в багажник. Багажник может быть функционально отделён от салона специальной крышкой;

Универсал

(от лат. universalis - общий) – закрытый, двухобъёмный кузов легкового автомобиля. Пассажирский салон объединён с багажным отделением. Имеет, как правило, пять дверей. Пятая дверь – задняя, для доступа в багажное отделение. Крыша салона продлена до заднего габарита. От хэтчбэка отличается увеличенным задним свесом и отсутствием задней кузовной панели, что облегчает пользование грузовым отсеком (погрузку и разгрузку);

Кабриолет

(от фр. cabriolet) – кузов с откидывающимся верхом, на базе седана, т.е. в классическом исполнении – трёхобъёмный, четырёхдверный, с числом посадочных мест – от 4-х, но чётких градаций не существует. Откидывающийся верх выполняется из полотна или пластика.

К кузовам открытого типа также относятся:

Родстер

Открытый кузов на базе купе;

Фаэтон

Открытый кузов на базе четырёх дверного универсала;

Тарга

Открытый кузов на базе купе с задним стеклом и дугой безопасности;

Пикап

(от англ. pick-up - поднимать, отрывать, подвозить) - двухобъёмный кузов легкового автомобиля коммерческого назначения с открытой грузовой платформой, которая структурно отделёна от пассажирского салона стационарной перегородкой.
В случае оснащения кузова жёстким несъёмным верхом пикап превращается в фургон.

Рамная конструкция кузова.

Рама является самостоятельным узлом автомобиля и выполняет функцию несущей конструкции. На раму крепятся все части и механизмы автомобиля, включая кабину и кузов. Рама воспринимает все силы, возникающие при движении автомобиля.
По способу передачи нагрузок выделяют следующие типы рам:

Пространственные рамы

– применяются в кузовах, воспринимающих большие нагрузки (например, спортивные автомобили);

X – образные рамы

– находят применение в автомобилях повышенной проходимости и удобны для независимой подвески каждого колеса;

Хребтовые рамы

– представляют собой основание в виде «трубы» с поперечными траверсами;

Лонжеронные рамы

– наиболее распространены среди несущих конструкций как легковых, так и грузовых автомобилей (см. рис 1.5.). Такая рама состоит из двух продольных балок прямоугольного профиля – лонжеронов и некоторого числа поперечин (траверс ). Элементы рамы скреплёны между собой сваркой и/или клёпкой.

Рисунок 1.5.

Конструкцию с несущим основанием

образуют элементы несущей рамы, соединенные с профильными элементами панели пола. Полученное таким образом основание, представляет собой отдельный узел автомобиля.

Несущий кузов с подрамником

Конструкция состоит из базовой части кузова и подрамника, расположенного обычно в передней части кузова (иногда, и спереди и сзади). Подрамник по своей сути является той же рамой, но меньшего (укороченного) размера, крепится к кузову болтами и может меняться при повреждении.

1. 2. Требования к безопасности кузовов легковых автомобилей

1.2.1. Активная безопасность

К конструктивным мероприятиям, повышающим активную безопасность кузова и автомобиля в целом, относятся мероприятия, которые снижают вероятность возникновения ДТП, например: увеличение площади остекления и улучшение обзора, улучшение функциональности органов управления и комфортабельности салона, повышение эффективности светотехнических устройств и др.

1.2.2. Пассивная безопасность

Мероприятия пассивной безопасности призваны уменьшить тяжесть последствий при ДТП для водителей и пассажиров.
В соответствии с существующими требованиями салон кузова должен иметь жесткую конструкцию, а передняя и задняя части кузова должны быть сминаемыми.
Задачей сминаемых (деформируемых) зон кузова является поглощение кинетической энергии, высвобождаемой при столкновении автомобиля с препятствием во время аварии. Деформируемые зоны должны смяться таким образом, чтобы энергия удара оказалась погашенной прежде, чем дойдёт до салона автомобиля и окажет воздействие на водителя и пассажиров.
При ударе деформируемые элементы кузова складываются либо в ""гармошку"", либо энергия удара гасится в конструктивных изгибах рамы (лонжеронов). Конструкции передней и задней части кузова идентичны, но сминаемость задней части, как правило, большая.

Важную роль в конструкции безопасного кузова играют бамперы . Бампер должен уберечь кузов от повреждения при наезде на неподвижное препятствие со скоростью до 8 км/час, а если бампер имеет энергопоглощающие амортизационные элементы (пружинные, гидравлические или пневматические) – до 20 км/час.

К элементам интерьера кузова, повышающих пассивную безопасность, относят энергопоглощающую рулевую колонку, усиленный передний подоконный пояс, усиленные надоконные балки, травмобезопасные двери и сиденья, углубления для ручек дверей и стеклоподъёмников и т.п.

1.3. Классификация автомобильного транспорта

1.3.1. Классификация автомобильного транспорта в России

В СССР действовали Единые отраслевые нормы (ОН 025270-66 от 1966 г), регламентирующие деление автомобилей на классы в зависимости от объёма двигателя (в сантиметрах кубических.) и сухой массы (т.е. массы автомобиля без груза и пассажиров), а также - соответствующую номенклатуру обозначений моделей, единую для всех автозаводов страны.

В соответствии с Отраслевыми нормами, класс и тип автомобиля входят в обозначение модели.
Обозначение имеет следующий вид: «ХХХ» - «АБВГ» ,
где:
ХХХ – сокращённое название (аббревиатура) завода изготовителя;
А - класс автомобиля (1 - особо малый, 2 - малый, 3 - средний, 4 – большой, 5 - высший).
Класс автомобиля 1 – автомобили особо малого класса с объёмом двигателя до 1,1 см? и массой автомобиля до 800 кг.
Класс автомобиля 2 – автомобили малого класса с объёмом двигателя от 1,1 до 1,8 см? и массой автомобиля от 800 до 1150 кг.
Класс автомобиля 3 – автомобили среднего класса с объёмом двигателя от 1,8 до 3,5 см? и массой автомобиля от 1150 до 1500 кг.
Класс автомобиля 4 – автомобили большого класса с объёмом двигателя более 3,5 и массой автомобиля 1500 кг.
Класс автомобиля 5 – автомобили высшего класса. Объём двигателя и вес автомобиля не регламентируется.

Примечание: Для автобусов и грузовиков используется иная, отличная от приведённой, система обозначений классов.

Б - тип автомобиля (1-легковой, 2-автобус, 3-грузовой, 4-тягач, 5-самосвал, 6-цистерна, 7-фургон, 9-специальный автомобиль);
В и Г - порядковый номер модели.
В некоторых случаях могут добавляться пятая и шестая цифры для обозначения модификации, а также - еще две-три цифры через дефис для обозначения исполнения (комплектации) конкретной модели.

Например:
ГАЗ-31029-51
Означает, что данный автомобиль:
ГАЗ - производства Г орьковского А втомобильного З авода;
(3) - среднего класса;
(1) – легковой;
(02) - вторая модель;
(9) - девятая модификация второй модели;
51 – номер комплектации.

В настоящее время данная система классификации применяется в РФ с одновременным «хождением» буквенной классификации, принятой в Европе.

1.3.2. Классификация автомобильного транспорта в Европе

Согласно европейской классификации все легковые автомобили относятся к одному из шести классов – A, B, C, D, E или F . Границы между классами достаточно условны и размыты.
Кроме того, существуют несколько отдельных групп автомобилей, которые не подходят ни под один из описанных выше классов.
Для таких автомобилей выделено три дополнительных класса S , M и J

Класс A (Mini cars)
– автомобили особо малого класса. Тип кузова обычно 3х или 5-дверный хэтчбэк, иногда седан. Длина автомобиля до 3,6 метров, ширина до 1,6 метра.

Класс B (Small cars)
- класс малогабаритных машин. В основном 3-х и 5-дверные хетчбэки, иногда выпускаются в кузовах седан и универсал. Чаще всего обладают передним приводом. Длина до 3,9 метра, ширина до 1,7 метра.

Класс C (Medium cars)
– автомобили, т.н. «первого» (или, «низшего») среднего класса.
На протяжении десятилетий законодателем мод в данном классе был Volkswagen Golf, из-за чего класс «С» часто называют «гольф-классом». Длина 3,9 - 4,4 метров, ширина до 1,6 - 1,8 метра. Типы кузовов – хэтчбек, седан, универсал. Реже - купе, кроссоверы и кабриолеты.

Класс D (Larger cars)
- Средний (второй средний, он же - семейный) класс, представленный в кузовах хетчбэк, седан, универсал и кроссовер. Длина 4,4 - 4,7 метра, ширина 1,7 - 1,8.

Класс E (Executive cars)
– полный средний класс, бизнес-класс. Обычно представлен кузовами седан и универсал, иногда встречаются хэтчбек, например, Renault Safrane или Renault Vel Satis. Длина обычно больше 4,6 метров, ширина больше 1,7 метров.

Класс F (Luxury cars)
– высший средний класс, представительский класс. Тип кузова – седан (только седан), на машины устанавливаются двигатели с числом цилиндров 6-ть и более. Длина кузова от 4,7 метра, ширина от 1,7 метра.

Класс S
К этому классу относят спорткары, купе и кабриолеты.

Класс M
К классу M относят универсалы и минивэны повышенной вместимости. Вместимость универсалов в трехрядном исполнении - от 6 до 8 мест, а минивэнов - до 9 мест, включая водителя. При демонтаже задних сидений кузов может использоваться для грузопассажирских перевозок.

Класс J
К классу J относятся Sport Utility Vehicle (SUV), Внедорожники и Вседорожники.

1.3.3. Классификация автомобильного транспорта в США

В Северной Америке автомобили классифицируются по длине колесной базы и объёму полезного пространства салона (interior passenger space). Критерии классификации с течением времени претерпевали существенные изменения.

По полезному объему салона легковые автомобили делятся на следующие категории:
Мини (minicompact car) – объём салона до 85 футов кубических;
Субкомпакты (sub-compact cars, subcompacts) – объём салона 85,0 - 99,9 футов кубических;
Компакты (compact cars, compacts) – объём салона 100-109,9 футов кубических;
Среднеразмерные автомобили (mid-size cars, intermediates) – объём салона 110-119,9 футов кубических;
Полноразмерные автомобили (large cars, full-size cars, standard size cars) – объём салона от 120 футов кубических.

Для универсалов:
Small station wagon – объём салона до 130 футов кубических;
Midsize station wagon – объём салона 130-160 футов кубических;
Large station wagon – объём салона более 160 футов кубических;

Для внедорожников:
Full size SUV
Midsize SUV
Compact SUV

Приведённые данные неоднократно пересматривались, а вплоть до 1980-х годов в основе этой классификации лежал параметр длины колесной базы. Ситуация такова, что «компакты» 1970-х годов по современным меркам соответствуют среднеразмерным, или даже полноразмерным автомобилям.

1.3.4. Классификация автомобильного транспорта в Японии

В Японии принята простая, удобная и понятная классификация:

Keijidosha - легкий класс (kei-cars) – автомобили, длина которых не превышает 3,4 м, ширина не более 1,48 м, высота не более 2 м, с объёмом двигателя не более 660 кубов.
Small size vehicles – малый класс, или «5 number» (по числу знаков в префиксе номера). Длина автомобиля не более 4,7 м, ширина до 1,7 м, высота до 2 м и двигатель не более 2000 см?.
Normal size vehicles – средний класс, или «3 number». Автомобили длиннее 4,7 м, шире 1,7 м, выше 2 м или с двигателями объемом более 2000 см?.

2. ШАССИ

Шасси легкового автомобиля рамной конструкции представлено на рисунке 1.6.

1 – рама; 2 – раздаточный узел (раздаточная коробка); 3 – коробка передач ; 4 – передний карданный вал; 5 – двигатель (силовой агрегат); 6 – система выпуска отработавших газов; 7 – задний карданный вал; 8 – запасное колесо; 9 – задний ведущий мост; 10 – топливный бак; 11 и 12 – передние и задние ведущие колёса.

Шасси обеспечивает передачу усилия от двигателя к ведущим колёсам, управление автомобилем и его передвижение. В состав шасси входит: 1) силовая передача (трансмиссия); 2) ходовая часть и 3) механизмы управления.

1.2.1 Трансмиссия

Трансмиссия (силовая передача) осуществляет передачу крутящего момента от коленчатого вала двигателя к ведущим колёсам, трансформируя его (крутящий момент) в зависимости от условий движения автомобиля.

К механизмам трансмиссии относятся следующие узлы и агрегаты : сцепление , коробка передач, раздаточная коробка, коробка отбора мощности на вспомогательные механизмы (например, лебёдку), карданная передача, главная передача, дифференциал , приводы ведущих колёс и некоторые другие механизмы.
Главная передача , коробка передач и раздаточная коробка (при её наличии) обеспечивают суммарное передаточное число трансмиссии автомобиля.

Силовые передачи

автомобилей различного назначения могут иметь существенные отличия.
По степени приспособленности к дорожным условиям, силовые передачи можно разделить на:
1) трансмиссию автомобилей классической компоновки с колёсной формулой 4х2;
2) трансмиссию автомобилей с приводом на передние колёса с колёсной формулой 4х2;
3) трансмиссию полноприводных автомобилей с колёсной формулой 4х4.
При этом трансмиссия полноприводного автомобиля, сконструированного для эксплуатации в условиях бездорожья (т.н. – внедорожник) и трансмиссия полноприводного автомобиля, созданного для дорог с твёрдым покрытием, также будут отличаться.

Колёсная формула

Условное обозначение общего числа колёс транспортного средства и числа ведущих колёс двумя числами: (общее число колёс) Х (число ведущих колёс) , при этом спаренные колёса на одной полуоси учитываются как одно колесо. Например, колёсная формула 4Х2 означает, что автомобиль имеет 4 колёса, 2 из которых ведущие. Автомобиль, обладающий полным приводом, имеет колёсную формулу, где оба числа одинаковы (4Х4, 6Х6, 8Х8 и т. д.). В формуле может присутствовать третья цифра (после второй), разделяемая от неё либо точкой, либо косой чертой.
Третья цифра (2 или 1), отделённая от второй цифры точкой указывает наличие или отсутствия спарки колёс ведущей оси (т.н. - тип ошиновки ). Если используется цифра «2» значит, на ведущей оси установлены двухскатные (спаренные) шины, а цифра «1» указывает на то, что все колеса односкатные.
Для многоосных автомобилей третьей цифрой через косую черту в колёсной формуле могут указывать количество управляемых колёс, способных к повороту (например, 16Х16/12).

1.2.2 Ходовая часть

Ходовая часть автомобиля состоит из:
1) несущего основания;
2) передней и задней осей;
3) подвески;
4) колёс.

1.2.3 Механизмы управления

К механизмам управления относятся рулевое управление и тормоза.

Современный автомобиль напичкан множеством примочек и апгрейдов . В этой статье мы попробуем разобраться во внутренностях автомобиля, а именно, в его устройстве и конструкции. Какие детали служат для комфорта, какие необходимы для езды, а какие – для безопасности. Ниже представлен список комплектующих, на которые можно разделить все устройства и кузовные части автомобиля:

  1. Несущая конструкция автомобиля.
  2. Трансмиссия.
  3. Электрооборудование.
  4. Двигатель.
  5. Система управления автомобилем.

Общие сведения об устройстве автомобиля

Несущая система автомобиля

Она является скелетом автомобиля, к которому в последующем крепятся все детали. Именно от нее зависит срок службы автомобиля, и именно на несущую систему приходятся все нагрузки, которым подвергается автомобиль во время движения. Отсюда и ценовое соотношение если определить стоимость всего автотранспорта в 100%, то 50% будет приходиться именно на эту систему. Условно ее можно разделить на несколько видов:

  1. Рамная несущая система. Преимущество этой системы в простоте, как производства, так и ремонта. Кроме того, рамная несущая система позволяет выпускать шасси, различные по модификации автомобиля.
  2. Кузовная несущая система. Данная система позволяет понизить массу автомобиля, снизить центр тяжести, а значит, повысить устойчивость при движении. Есть, конечно, у нее и недостаток – это достаточно плохая изоляция шумов извне.
  3. Рамно-кузовная система. Применяется исключительно на автобусах. Состоит из соединенных между собой деталей рамы и кузова. Является довольно простой при ремонте и производстве.

Важность трансмиссии

Следующий элемент, который мы рассмотрим, – это трансмиссия. Это силовая передача, осуществляющая взаимосвязь двигателя с ведущими колесами автомобиля. Различают несколько видов трансмиссии: механическая (наиболее распространена), электрическая, гидрообъемная и комбинированная. На примере механической трансмиссии рассмотрим работу различных узлов, входящих в ее состав:

  1. Сцепление. Главной задачей является мягкое соединение маховика, первичного вала коробки передач. В состав сцепления входят следующие составные корзина и диск сцепления, а также выжимной подшипник.
  2. Коробка передач. Она предназначена для преобразования крутящего момента и дальнейшая его передача к карданному валу. Двигатель усиливается за счет вторичного вала. Среди коробок передач имеется разделение на механический и автоматический вид.
  3. Карданный вал (для автомобилей с задним приводом), передающий крутящий момент от вторичного вала к главной передаче.
  4. Соединение дифференциала и главной передачи представляет собой так называемый мост, который передает силу двигателя к колесам через полуоси.
  5. Полуось (приводной вал) – металлический стержень с устройством сцепления с дифференциалом и ШРУСом.
  6. Шарнир равных угловых скоростей (ШРУС) осуществляет подачу силы вращения на ведущие колеса.
  7. Раздаточный механизм распределяет усилия двигателя по ведущим колесам. Данный узел применяется в авто с колесной формулой 4*4.

Схма электрооборудования автомобиля – ВАЗ 2109

Электрооборудование автомобиля

Далее идет электрооборудование, которое представляет собой совокупность электрических приборов и аппаратов, обеспечивающих нормальную работу двигателя. Электрическая энергия необходима для запуска автомобиля, воспламенения горючей смеси, освещения, сигнализации, дополнительной аппаратуры. В состав электрооборудования входят источники и потребители тока. Источниками электрооборудования являются:

  1. Генератор – служит для преобразования механической энергии, получаемой от двигателя в электрическую энергию;
  2. Регулятор напряжения – выполняет функцию стабилизатора, держит на постоянном уровне напряжение тока, который вырабатывается генератором при изменяющейся частоте вращений коленчатого вала двигателя;
  3. Аккумуляторная батарея (аккумулятор) – необходим для преобразования химической энергии в электрическую энергию.

Потребителями тока являются:

  1. Стартер – служит для обеспечения вращения коленчатого вала частотой необходимой для пуска двигателя;
  2. Система зажигания – в процессе своей работы осуществляет воспламенение топлива в цилиндрах в порядке рабочего режима двигателя;
  3. Система освещения – вспомогательная служба, обеспечивающая работу авто в условиях пониженной видимости;
  4. Система сигнализации – служит для обеспечения безопасности движения автомобиля.

Следующее, что мы рассмотрим, – это двигатель. Он являет собой комплекс механизмов, которые преобразуют тепловую энергию сгорающего в его цилиндрах топлива в механическую. Двигателя делят по многим параметрам. Во-первых, по виду топлива: бензиновые и дизельные. Во-вторых, по воспламенению горючей смеси: от электрической искры и от сжатия. В-третьих, по числу цилиндров: 2-ух, 3-ех, 4-ех, 5-ти, а также 6-ти и 8-ми цилиндровые и многоцилиндровые. В-четвертых, по расположению цилиндров: рядные и V-образные. Рабочий процесс двигателей состоит из тактов впуска, сжатия, рабочего хода и выпуска.

Механизмы и системы двигателя

Распределяют следующие механизмы и системы двигателя. Рабочий процесс двигателя главным образом осуществляется благодаря работе кривошипно-шатунному механизму. Открытие и закрытие впускных и выпускных клапанов двигателя производится за счет газораспределительного механизма. Подачу масла к трущимся деталям двигателя производит смазочная система. Охлаждение сильно нагретых деталей двигателя происходит за счет специальной системы охлаждения, которая отводит теплоту. Система питания подготавливает горючую смесь для двигателя и обеспечивает выход из двигателя отработавших газов. Воспламенение горючей и рабочей смеси в цилиндрах двигателя происходит благодаря системе зажигания.

Работа ходовой части

Ходовая часть – это комплекс устройств, при взаимодействии которых осуществляется перемещение автомобиля по дороге. Сюда входят колеса, а также задняя и передняя подвески. Через колеса осуществляется связь транспорта с дорогой. Главными задачами колес является передвижение по поверхности и изменение направления движения. Колеса различают по типу конструкции (дисковые, бездисковые, спицевые) и по назначению (ведущие, управляемые, комбинированные, поддерживающие). Колеса автомобиля могут быть с глубокими ободами или соединительными деталями, по внешнему виду напоминающими диски и спицы. Эти самые ободья необходимы для установки пневматической шины. Именно за счет ступицы осуществляется крепление колеса к мосту и его способность вращаться. За счет подвески происходит упругая связь колес и несущей системой. Подвеска выполняет две функции. Первая – повышение безопасности движения автомобиля, а вторая – это плавный ход автомобиля.

Типы подвески

Подвески делятся на следующие типы:

  1. Зависимая подвеска – это когда колеса одного из мостов взаимосвязаны друг с другом посредством жесткой балки. Следовательно, при движении они взаимосвязаны.
  2. Независимая подвеска – это когда колеса одного из мостов не связаны между собой, а подвешены независимо по отношению друг к другу, а следовательно и перемещение любого из колес не вызывает перемещения другого. Общими частями всех подвесок являются:
  3. Элементы, обеспечивающие упругость;
  4. Элементы, распределяющие направление силы;
  5. Гасящий элемент;
  6. Элементы, стабилизирующие поперечную устойчивость;
  7. Крепеж.

Работа подвески

Рассмотрим их более подробно. Элементы, которые обеспечивают упругость между неровностями на дороге и кузовом автомобиля, являются, так сказать, буфером. Сюда относятся пружины, рессоры, торсины. Жесткость пружин бывает постоянной и переменной. Рессоры визуально представляют из себя несколько металлических пластин взаимно связанных между собой, а также они довольно упруги по свойствам. Торсины внешне выглядят как металлическая труба, а внутри располагаются стержни.

Устройства для распределения силы

Устройства, распределяющие направление силы, в свою очередь, выполняют несколько задач. Во-первых, крепление подвески к кузовной части автомобиля. Во-вторых, передача силы на кузовную часть автомобиля. В-третьих, правильное расположение колес по отношению к кузову в горизонтальной и вертикальной плоскостях. Задачей гасящего элемента является противодействие элементам упругости, а если быть точнее, – сглаживание упругости. Стабилизационные устройства поперечной упругости распределяют боковую нагрузку автомобиля при изменении траектории движения. Все составные части подвески крепятся к кузовной основе и к опорным частям колес.

Система управления автомобилем

Под самой системой понимается совокупность устройств и механизмов, предназначенных для изменения скорости авто и изменения направления движения. Под устройствами изменения направления движения скрывается не что иное, как рулевое управление, применяющееся для нормального управления авто. Под системой изменения скорости, в свою очередь, понимается тормозная система, являющаяся главным узлом безопасности водителя и пассажиров. В комплектацию рулевой системы входят:

  1. Руль;
  2. Рулевой вал с крестовиной, который с одной стороны имеет шпицы для фиксации руля, а с другой шпицы – для крепления к рулевой колонке;
  3. Рулевая колонка, устройство, собранное в одном корпусе, в состав которого входит червячная ведущая шестерня и ведомая, рулевой тяги, состоящие из наконечника и маятника.

Работа рулевого механизма

Рассмотрим более детально рулевой механизм в работе: во время вращения рулевого колеса усиливается вращение червячного механизма колонки, который, в свою очередь, начинает вращать ведомую шестерню, приводящую в работу рулевую сошку. Она имеет крепление к средней рулевой тяге, а другой конец тяги соединяется с маятниковым рычагом. Он устанавливается на опоре и имеет жесткое крепление к кузову авто. От сошки с маятником отходят боковые тяги. Наконечники соединены со ступицей. Рулевая сошка, когда поворачивается, посылает усилие сразу на боковую тягу и средний рычаг. Средний рычаг, в свою очередь, дает начало действию второй боковой тяге, в результате чего ступицы поворачиваются, а, следовательно, и колеса вместе с ними. Главной задачей системы торможения является возможность управления скорость авто.

Системы торможения

Существует три варианта системы торможения: рабочая, стояночная, запасная. Основным узлом управления автомобилем и сохранения его в безопасности является рабочая тормозная система. Во избежание произвольного движения авто во время долгой стоянки на участках с наклоном дороги используют стояночный тормоз (ручник). Относительно молодой является запасная тормозная система, используемая для торможения ввиду неисправности рабочей тормозной системы. Из-за того, что пользование ручником при движении исключено, водитель с помощью рычага запасной системы с легкостью блокирует колеса, и транспорт останавливается.

Принцип действия тормозной системы

Данная система торможения может являться отдельным узлом или частью рабочей тормозной системы. Система торможения автотранспорта построена на эффекте трения. Именно вследствие трения между движущейся и находящейся в неподвижности деталью происходит такое явление, как торможение. Ниже рассмотрим непосредственно сам процесс тормоза. Во время процесса торможения возникает эффект трения между тормозными колодками и тормозным диском или тормозным барабаном, который находится в движении. Вследствие чего тормозные системы стало принято делить на дисковые и барабанные. В наше время стало принято использование результата симбиоза этих систем торможения, а именно, их сочетание. Хотя, может быть иначе, тут все зависит от решения конструкторов.

Вот, в принципе и все основные устройства и конструкции автомобиля. Конечно, можно еще много всяких мелочей и деталей упомянуть и вспомнить, но именно вышеупомянутые устройства и конструкции являются основными в автомобиле.

Изобретение относится к области транспортного машиностроения. Передняя часть автомобиля содержит несущие элементы бампера и замка капота, прочно соединенные между собой, энергопоглощающую конструкцию. Энергопоглощающая конструкция опирается с одной стороны на несущий элемент бампера, а с другой стороны - на несущий элемент замка капота и содержит множество ребер и поперечные планки. Ребра расположены между несущим элементом замка капота и несущим элементом бампера и ориентированы в продольном направлении автомобиля. Поперечные планки соединяют ребра между собой. Нижняя поперечная планка прилегает к несущему элементу бампера. Достигается эффективная защита пешеходов. 9 з.п. ф-лы, 4 ил.

Изобретение относится к передней части автомобиля, содержащей несущие элементы бампера и замка капота, прочно соединенные между собой. Эти две детали, в целом, существенно способствуют жесткости передней части автомобильного кузова и рассчитаны на поглощение значительной энергии деформации в случае столкновения с другим транспортным средством. Это приводит к тому, что при столкновении с пешеходом они, в целом, существенно не деформируются. Для защиты также пешехода требуется расположить перед этими обоими несущими элементами более легко деформируемые участки, которые при столкновении с пешеходом деформируются и могут поглощать энергию столкновения.

Из DE 102005020413 А1 известна передняя часть автомобиля, у которой решетка радиатора опирается на несущий элемент бампера и на расположенный перед ним элемент. Поскольку решетка радиатора сама по себе жесткая, предложено предусмотреть на ее верхнем крае гибкую планку с обладающим сильфонным эффектом гибким поднутренным участком, который при столкновении с пешеходом сжимается и тем самым обеспечивает поворотное движение жесткой решетки радиатора. Из-за небольших по сравнению со всей решеткой радиатора габаритов этого краевого участка трудно придать ему способность энергопоглощения, отвечающую законодательным требованиям к защите пешеходов.

Стремление обеспечить эффективную защиту пешеходов привело к созданию конструкций передней части, в которых несущий элемент замка капота смещен назад относительно несущего элемента бампера, а выступающий за несущий элемент замка капота край капота деформируется относительно легко, подаваясь в случае столкновения с пешеходом и затормаживая его. При этом оказалось, что капот в начале деформации подается довольно легко и что по мере деформации сопротивление ей сильно возрастает. Для повышения защиты пешеходов было бы желательно уменьшить зависимость сопротивления деформации от степени деформации.

Задачей изобретения является создание передней части автомобиля, которая простыми средствами обеспечивала бы эффективную защиту пешеходов и решала или, по меньшей мере, уменьшала бы ту или иную описанную проблему.

Эта задача решается за счет того, что в передней части автомобиля, содержащей несущие элементы бампера и замка капота, прочно соединенные между собой, предусмотрена энергопоглощающая конструкция, опирающаяся с одной стороны на несущий элемент бампера, а с другой стороны - на несущий элемент замка капота и содержащая ребра, расположенные между несущими элементами замка капота и бампера и ориентированные по существу в продольном направлении автомобиля. Поскольку ребра ориентированы по существу в продольном направлении автомобиля, они также по существу параллельны действующей на них силе удара в случае столкновения с пешеходом. Благодаря такой ориентации ребра обладают значительной жесткостью, особенно в начале своей деформации, так что они уже при небольшой деформации передней части автомобиля начинают эффективное торможение пешехода. За счет смятия ребер в процессе удара непрерывно расходуется энергия, так что даже в процессе деформации продолжается эффективное торможение пешехода.

Ребристая конструкция особенно предпочтительно используется в передней части автомобиля, несущий элемент замка капота которой смещен назад относительно несущего элемента бампера.

Выступающий вперед за несущий элемент замка капота краевой участок капота преимущественно поддерживается энергопоглощающей конструкцией, так что ударяющийся о нее пешеход тормозится не только за счет жесткости краевого участка капота, но и за счет нижележащих ребер.

Чтобы обеспечить непрерывное сопротивление деформации энергопоглощающей конструкции в течение всего процесса деформации, энергопоглощающая конструкция преимущественно содержит соединяющие ребра между собой поперечные планки. Они, в свою очередь, могут за счет деформации рассеивать энергию или придавать жесткость отдельным ребрам, связывая их с соседними ребрами.

Чтобы равномерно направить давление капота в энергопоглощающую конструкцию, целесообразно, если одна из поперечных планок поддерживает передний краевой участок капота.

Для стабилизации энергопоглощающей конструкции далее целесообразно, что по меньшей мере одна из поперечных планок прилегает к одному из несущих элементов - несущему элементу замка капота или несущему элементу бампера.

Эта поперечная планка может быть зафиксирована на несущем элементе предпочтительно посредством вставного соединения.

Чтобы эффективно направить в несущие элементы действующую на ребра силу удара, целесообразно, если ребра в продольном разрезе выступают за линию, соединяющую несущие элементы замка капота и бампера.

Вся энергопоглощающая конструкция может быть выполнена целиком из пластика.

Другие признаки и преимущества изобретения приведены в нижеследующем описании примеров его осуществления со ссылкой на прилагаемые чертежи, на которых изображают:

Фиг.1: перспективный вид энергопоглощающей конструкции для передней части автомобиля в первом варианте;

Фиг.2: схематичный продольный разрез передней части с энергопоглощающей конструкцией с фиг.1;

Фиг.3: аналогичный фиг.1 вид энергопоглощающей конструкции во втором варианте;

Фиг.4: аналогичный фиг.2 разрез передней части с энергопоглощающей конструкцией с фиг.3.

Изображенная на фиг.1 в перспективном виде энергопоглощающая конструкция представляет собой отливку из пластика. Она содержит расположенные по ширине автомобиля поперечные планки 1-4, соединяющие между собой вертикальные ребра 5, преимущественно в количестве от 8 до 12 штук. Верхние поперечные планки 1-3 наклонены вперед наподобие навеса, а самая верхняя поперечная планка 1 имеет упорный заплечик 6, предназначенный для монтажа на передней стороне несущего элемента 7 замка капота (фиг.2). Отформованные на задней стороне упорного заплечика 6 фиксирующие цапфы 8 закрепляют упорный заплечик 6 в соответствующих отверстиях несущего элемента 7 замка капота.

Как видно на фиг.2, наклонная главная поверхность 9 поперечной планки 1 следует по существу внешнему контуру автомобильного кузова, который на участке перед несущим элементом 7 замка капота выполнен выпуклым. Главная поверхность 9 проходит на небольшом расстоянии под выступающим за несущим элементом 7 замка капота передним краевым участком 11 капота 10 двигателя.

Поперечные планки 2, 3 поддерживают своим передним краем горизонтальные выступы 12 чашеобразной облицовки 13 бампера, формованной из пластика. Поскольку ребра 5 ориентированы параллельно направлению движения, а поперечные планки 2, 3 расположены за выступами 12, энергопоглощающая конструкция не препятствует характеру течения проходящего между выступами 12 охлаждающего воздуха, так что эффективность расположенного за энергопоглощающей конструкцией радиатора (не показан) не нарушена.

Облицовка 13 бампера закреплена на его несущем элементе 14, который, как и несущий элемент 7 замка капота, расположен поперек по всей ширине передней части автомобиля и прочно соединен с жесткой рамой посредством крэш-боксов (не показаны).

На несущий элемент 14 бампера опирается также нижняя поперечная планка 4 энергопоглощающей конструкции, закрепленная с помощью фиксирующих цапф 15.

Если в случае столкновения с пешеходом тот ударяется о переднюю часть автомобиля, то на краевой участок 11 капота по стрелке 16 на фиг.2 действует сила. Поскольку капот не опирается лежащим перед несущим элементом 7 краевым участком 11, этот краевой участок 11 сам по себе довольно легко податлив. Однако достаточно небольшой деформации, чтобы привести краевой участок 11 в контакт с верхней поперечной планкой 1 энергопоглощающей конструкции и направить силу удара в энергопоглощающую конструкцию. В результате ребра 5 подвержены воздействию параллельной их главным поверхностям силы. В этом направлении несущая способность ребер 5 высока, так что эффективная задержка пешехода наступает уже при небольшой деформации передней части.

Сила удара распределяется внутри ребер 5 на оба несущих элемента 7, 14, как это обозначено на фиг.2 штриховыми стрелками. Задний участок ребер при ударе нагружен на растяжение. Поэтому ребра могут по существу только подаваться, причем они на переднем участке по существу перед и выше соединяющей несущие элементы 7, 14 штрихпунктирной линии отклоняются в сторону и образуют при этом складки. На этом переднем участке ребра 5 соединены между собой поперечными планками 2, 3, так что боковое отклонение одного ребра 5 передается поперечными планками 2, 3 на соседние ребра. Даже если в результате удара капот 10 сминается лишь локально, результирующая из этого деформация распределяется по всей энергопоглощающей конструкции, так что независимо от места удара достигается эффективная задержка.

Практические испытания показали, что с помощью описанной энергопоглощающей конструкции продолжительность процесса задержки выпущенного в переднюю часть автомобиля импактора бедра, измеренную как полуширину кривой усилия задержки, удалось более чем удвоить примерно с 10 до 22 мс, а пиковое значение усилия задержки - уменьшить почти наполовину примерно с 9 до примерно 5 кН.

На фиг.3 и 4 изображен второй вариант осуществления изобретения, отличающийся от варианта на фиг.1 и 2 в основном тем, что самая нижняя поперечная планка 4 расширена вперед и снабжена свисающим вперед фартуком 18, который закрывает несущий элемент 14 бампера и расположенный перед ним слой 17 пенопласта. Другими словами, здесь функции облицовки 13 бампера и энергопоглощающей конструкции объединены в одной цельной пластиковой фасонной детали, которая перекрывает промежуток между несущим элементом 14 бампера и несущим элементом 7 замка капота. Выступы 12 больше не нужны. Ударные свойства этой передней части такие же, как и у передней части на фиг.1 и 2. Сборка упрощена благодаря отсутствию громоздкой конструктивной детали.

Перечень ссылочных позиций

1-4 - поперечные планки

6 - упорный заплечик

7 - несущий элемент замка капота

8 - фиксирующая цапфа

9 - главная поверхность

10 - капот двигателя

11 - краевой участок

12 - выступ

13 - облицовка бампера

14 - несущий элемент бампера

15 - фиксирующая цапфа

16 - стрелка

17 - слой пенопласта

18 - фартук

1. Передняя часть автомобиля, содержащая несущий элемент (14) бампера и несущий элемент (7) замка капота, прочно соединенные между собой, энергопоглощающую конструкцию (1-5), опирающуюся с одной стороны на несущий элемент (14) бампера, а с другой стороны - на несущий элемент (7) замка капота, и содержащую множество ребер (5), расположенных между несущим элементом (7) замка капота и несущим элементом (14) бампера и ориентированных, по существу, в продольном направлении автомобиля, а также поперечные планки (1-4), соединяющие ребра (5) между собой, причем нижняя поперечная планка (4) прилегает к несущему элементу (14) бампера.

2. Передняя часть по п.1, отличающаяся тем, что несущий элемент (7) замка капота смещен назад относительно несущего элемента (14) бампера.

3. Передняя часть по п.1 или 2, отличающаяся тем, что капот (10) имеет передний краевой участок (11), выступающий вперед за несущий элемент (7) замка капота и поддерживаемый энергопоглощающей конструкцией (1-5).

4. Передняя часть по п.3, отличающаяся тем, что краевой участок (11) капота (10) в продольном разрезе выступает за линию, соединяющую несущий элемент (7) замка капота и несущий элемент (14) бампера.

5. Передняя часть по п.3, отличающаяся тем, что одна из поперечных планок (1) поддерживает передний краевой участок (11) капота (10).

6. Передняя часть по п.1, отличающаяся тем, что верхняя (1) из поперечных планок (1, 4) прилегает к несущему элементу (7) замка капота.

7. Передняя часть по п.1, отличающаяся тем, что поперечная планка (1, 4) зафиксирована на несущем элементе (7, 14) посредством вставного соединения (8, 15).

8. Передняя часть по п.1, отличающаяся тем, что ребра (5) в продольном разрезе выступают за линию, соединяющую несущий элемент (7) замка капота и несущий элемент (14) бампера.

9. Передняя часть по п.1, отличающаяся тем, что энергопоглощающая конструкция (1-5) выполнена как одно целое из пластика.

10. Передняя часть по п.1, отличающаяся тем, что энергопоглощающая конструкция (1-5) объединена с закрывающей несущий элемент (14) бампера облицовкой (13) бампера в один конструктивный узел.

Похожие патенты:

Изобретение относится к конструкции передней части автомобиля, которая содержит несущую структуру (1, 5, 6), на которой закреплен радиатор (14), а перед радиатором (14) расположен держатель (11) бампера таким образом, что он в случае столкновения отклоняется назад к радиатору (14).

Изобретение относится к области летательных аппаратов. Фюзеляж летательного аппарата содержит носовую часть с кабиной управления и передним шасси, серединную часть с элементами крепления крыльев, хвостовую часть с реактивным двигателем и оперением. Между серединной и хвостовой частями установлены соединительное звено и изогнутая по дуге решетчатая ферма, площадь решетки которой больше площади всасывающего сопла реактивного двигателя. Соединительное звено выполнено полнотелым/пустотелым. Через соединительное звено проложены трубопроводы, электрические кабели для обеспечения работы реактивного двигателя и поворотных элементов оперения. Изобретение направлено на повышение безопасности летательного аппарата. 4 з.п. ф-лы, 7 ил.

Изобретение относится к области транспортного машиностроения. Монтажное устройство для автомобиля имеет одно поперечное сечение потока для связи текучей среды между охлаждающим устройством и атмосферой, которое содержит монтажную деталь. Монтажная деталь для соединяемых деталей кузова, таких как элементы обшивки, корпуса фар для блоков фар, имеет первое и второе крепежные приспособления. Первое крепежное приспособление расположено со стороны кузова. Второе крепежное приспособление расположено со стороны соединяемой детали. Соединяемые детали кузова расположены на монтажной детали. В качестве соединяемой детали кузова представлена решетка воздухозаборника, так что охлаждающее устройство соединено с атмосферой по текучей среде. Достигается улучшение прохождения потока воздуха через воздухозаборник. 10 з.п. ф-лы, 3 ил.

Группа изобретений относится к вариантам блока для транспортного средства, содержащим облицовку бампера, воздухозаборную решетку 5 и верхний амортизатор удара 7, и транспортному средству. Верхний амортизатор удара имеет последовательность внутренних вертикальных 21 и горизонтальных 19 ребер, размещенных между передней поверхностью и задней поверхностью амортизатора удара 7. Ребра 21 чередуются с горизонтальными ребрами и находятся на расстоянии друг от друга. Верхний амортизатор удара 7 содержит, по меньшей мере, одну зону 29 уменьшенной толщины, и, по меньшей мере, одно отверстие 25, расположенное на уровне одного из горизонтальных ребер 19 таким образом, что воздухозаборная решетка 5 закреплена на верхнем амортизаторе удара 7 на уровне этой зоны 29 уменьшенной толщины на по меньшей мере одном горизонтальном ребре 19 путем прохода средств 27 крепления через упомянутое отверстие 25. Предпочтительно, чтобы ширина отверстия 25 была меньше ширины горизонтального ребра 19. Обеспечивается придание округлого профиля облицовке бампера 3 для соответствия требованиям при столкновении с пешеходом. 3 н. и 6 з.п. ф-лы, 4 ил.

Группа изобретений относится к области транспортного машиностроения. Передний бампер автотранспортного средства содержит воздухозаборную решетку, на которой установлена отделочная планка. Решетка состоит из набора перекрещивающихся вертикальных и горизонтальных реек. Одна из горизонтальных реек образует опору для горизонтальной отделочной планки. Опора имеет поперечное сечение, имеющее общую S-образную форму, образующую в верхней части выемку и в своей нижней части выпуклую зону. Планка, имеющая в поперечном сечении общую С-образную форму, расположена на выпуклой зоне. Планка удерживается на опоре с одной стороны верхним краем, заклиненным в выемке, и с другой стороны защелкивающимися средствами, предназначенными для сцепления нижнего края планки с основанием выпуклой зоны. Планка содержит концевые части, образующие уступы в заднем направлении. Концевые части закрыты спереди смежными отделочными деталями. Автотранспортное средство содержит упомянутый передний бампер. Достигается универсальность использования внутри одного модельного ряда. 2 н. и 5 з.п. ф-лы, 4 ил.

Группа изобретений относится к области транспортного машиностроения. По первому варианту решетка радиатора содержит внутреннюю и наружную решетки, соединительную и крепежную части. Крепежная часть прикрепляет внутреннюю и наружную решетки к кузову транспортного средства. Соединительная часть содержит первую и вторую крепежные части и фиксирующий захват. Первая крепежная часть выполнена на внутренней решетке. Фиксирующий захват выполнен на внутренней решетке и обращен к первой крепежной части. Вторая крепежная часть выполнена на наружной решетке. Фиксирующий захват имеет гибкую часть. По второму варианту первая крепежная часть имеет позиционирующее отверстие, расположенное в месте, соответствующем позиционирующему отверстию кузова транспортного средства. По третьему варианту вторая крепежная часть имеет позиционирующую бобышку, вставляемую в позиционирующее отверстие. По четвертому варианту вторая крепежная часть имеет первый наружный периферийный край некруглой формы, входящий в контакт с боковой стенкой первой крепежной части. Достигается повышение точности сборки решетки радиатора. 4 н. и 11 з.п. ф-лы, 17 ил.

Изобретение относится к области транспортного машиностроения

Автомобиль является технически сложным устройством, состоящим из большого количества деталей, узлов и механизмов. Разбираться в них обязан каждый уважающий себя автовладелец, даже не для того, чтобы уметь самостоятельно устранить любую неисправность, которая может возникнуть в дороге, а просто для понимания принципа работы своей машины, и умения на понятном специалисту языке объяснить суть возникших проблем. Для этого необходимо знать хотя бы азы, из каких основных частей состоит авто, и как называются правильно каждая деталь.

Кузов авто

Основой любой машины является её кузов, представляющий собой корпус автомобиля, в котором размещаются водитель, пассажиры и грузы. Именно в кузове располагаются и все остальные элементы авто. Одно из главных его назначений – это защита находящихся в нём людей и грузов от воздействия внешней среды.

Несущая система автомобиля.Она является скелетом автомобиля, к которому в последующем крепятся все детали

Обычно кузов крепится на раме, но встречаются авто и с безрамной конструкцией, и тогда кузов одновременно выполняет функции рамы. Конструкция кузова автомобиля бывает:

  • однообъёмная, когда в одном объёме располагаются моторный, пассажирский и грузовой отсек (примером могут служить минивэны или фургоны);
  • двухобъёмная, в котором предусмотрен моторный отсек, а места для пассажиров и груза объединены в одном объёме (универсалы, хэтчбеки, кроссоверы и внедорожники);
  • трёхобъёмная, где предусмотрены отдельные отсеки для каждой части кузова автомобиля – грузовой, пассажирской и моторной (пикапы, седаны и купе).

В зависимости от характера нагрузки кузов может иметь три типа:

  • несущий;
  • полунесущий;
  • разгруженный.

Большинство современных легковых автомобилей имеет несущую конструкцию, которая воспринимает все действующие на машину нагрузки. Общее устройство кузова легкового автомобиля предусматривает наличие следующих основных элементов:

  • лонжеронов, представляющих собой несущие балки в форме прямоугольной профильной трубы, они бывают передние, задние и лонжероны крыши;

Кузовная несущая система. Данная система позволяет понизить массу автомобиля, снизить центр тяжести, а значит, повысить устойчивость при движении
  • стоек – элементов конструкции, поддерживающих крышу (передние, задние и средние);
  • балок и поперечин, которые бывают у крыши, лонжеронов, под опорами двигателя, и каждым рядом сидений, имеется также передняя поперечина и поперечина радиатора;
  • порогов и пола;
  • надколёсных ниш.

Автомобильный двигатель, его виды

Сердцем авто, его главным узлом является двигатель. Именно эта часть автомобиля создаёт крутящий момент, который передаётся на колёса, заставляя машину перемещаться в пространстве. Сегодня существуют следующие основные виды автодвигателей:

  • ДВС или двигатель внутреннего сгорания, который для получения механической энергии использует энергию сжигаемого в его цилиндрах топлива;
  • электродвигатель, работающий от электрической энергии аккумуляторных батарей или водородных элементов (автомобили на водородных элементах сегодня уже имеются у большинства ведущих автостроительных компаний как опытные образцы и даже имеются в мелкосерийном производстве);
  • гибридные двигатели, соединяющие в одном агрегате электродвигатель и ДВС, соединительным звеном между которыми выступает генератор.

Он являет собой комплекс механизмов, которые преобразуют тепловую энергию сгорающего в его цилиндрах топлива в механическую

По типу сжигаемого топлива все ДВС делятся на следующие разновидности:

  • бензиновые;
  • дизельные;
  • газовые;
  • водородные, в которых топливом выступает жидкий водород (устанавливаются лишь на опытных моделях).

По конструкции ДВС бывают:

  • поршневые;
  • роторно-поршневые;
  • газотурбинные.

Трансмиссия

Главное назначение трансмиссии состоит передаче крутящего момент от коленчатого вала двигателя на колёса. Элементы, из которых она состоит, носят такие названия:

  • Сцепление, представляющее собой два фрикционных диска, прижатых друг к другу, которые соединяют коленвал двигателя с валом редуктора. Это соединение валов двух механизмов выполнено разъёмным, чтобы, отжимая диски, можно было разорвать связь двигателя и редуктора, для переключения передачи и изменения скорости вращения колёс.

Это силовая передача, осуществляющая взаимосвязь двигателя с ведущими колесами автомобиля
  • Коробка передач (или редуктор). Этот узел служит для изменения скорости и направления движения авто.
  • Карданная передача, представляющая собой вал с шарнирными соединениями на концах, служащий для передачи крутящего момента задним приводным колёсам. Она используется только в заднеприводных и полноприводных машинах.
  • Главная передача, расположенная на приводном мосту автомобиля. Она передаёт крутящий момент от карданного вала полуосям, изменяя направление вращения на 90о.
  • Дифференциал – это механизм, служащий для обеспечения разных скоростей вращения правого и левого приводных колёс при поворотах автомобиля.
  • Приводные валы или полуоси – элементы, передающие вращение колесам.

В полноприводных машинах имеется раздаточная коробка, распределяющая вращение на обе оси.

Ходовая часть

Комплекс механизмов и деталей, служащих для перемещения автомобиля и погашения, возникающих при этом вибраций и колебаний, называется ходовой частью. К ходовой части относятся:

  • рама, к которой крепятся все остальные элементы ходовой части (в безрамных машинах для их крепления используются элементы кузова автомобиля);

Ходовая часть – это комплекс устройств, при взаимодействии которых осуществляется перемещение автомобиля по дороге
  • колёса, состоящие из дисков и шин;
  • передняя и задняя подвеска, которая служит для гашения колебаний, возникающих во время движения, и бывает рессорная, пневматическая, пружинная или торсионная, в зависимости от применяемых демпфирующих элементов;
  • балок мостов, служащих для установки полуосей и дифференциалов, они имеются только в авто с зависимой подвеской.

Большинство современных легковых автомашин имеют независимую подвеску, и балки мостов у них отсутствуют.

Рулевое управление

Для нормального перемещения на автомобиле водителю необходимо совершать повороты, развороты или объезды, то есть отклоняться от прямолинейного движения, или просто контролировать свою машину, чтобы её не увело в сторону. Для этого в её конструкции предусмотрено рулевое управление. Это один из самых простых механизмов в автомобиле. Как называется часть элементов, рассмотрим ниже. Рулевое управление состоит из:

  • руля с рулевой колонкой, так называется обычный вал, на котором жёстко насажено рулевое колесо;

Эти устройства состоят из рулевого управления, которое связано с передними колесами рулевым приводом и тормозами
  • рулевого механизма, состоящего из зубчатой рейки и шестерни, насаженной на вал рулевой колонки, он преобразовывает вращательное движение рулевого колеса в поступательное перемещение рейки в горизонтальной плоскости;
  • рулевого привода, передающего воздействие от рейки рулевого механизма колёсам, для их поворота, и включающего в себя боковые тяги, маятниковый рычаг и поворотные рычаги колёс.

В современных авто используется дополнительный элемент – усилитель руля, позволяющий водителю прилагать меньшее усилие для обеспечения поворота рулевого колеса. Он бывает следующих видов:

  • механический;
  • пневмоусилитель;
  • гидравлический;
  • электрический;
  • комбинированный электрогидроусилитель.

Тормозная система

Важной частью машины, обеспечивающей безопасность управления, является тормозная система. Главное её назначение состоит в том, чтобы принудительно остановить движущееся транспортное средство. Она также используется, когда необходимо резко сбросить скорость движения авто.


Существует три варианта системы торможения: рабочая, стояночная, запасная

Тормозная система бывает следующих видов по типу привода:

  • механическая;
  • гидравлическая;
  • пневматическая;
  • комбинированная.

На современных легковых авто устанавливается тормозная система с гидроприводом, которая состоит из следующих элементов:

  • педали тормоза;
  • главного гидроцилиндра тормозной системы;
  • заправочного бачка главного цилиндра, для заправки тормозной жидкости;
  • вакуумного усилителя, имеющегося не во всех моделях;
  • системы трубопроводов для переднего и заднего тормоза;
  • тормозных цилиндров колёс;
  • тормозных колодок, прижимаемых колесными цилиндрами к ободу колеса при торможении транспортного средства.

Тормозные колодки бывают дисковые или барабанные и имеют возвратную пружину, которая отжимает их от обода колёс при завершении процесса торможения.


Электрооборудование, которое представляет собой совокупность электрических приборов и аппаратов, обеспечивающих нормальную работу двигателя

Электрооборудование

Одна из наиболее сложных систем легковых авто с множеством самых разных элементов и соединяющих их проводов, опутывающих весь корпус автомобиля, – это электрооборудование, которое служит для обеспечения электроэнергией всех электротехнических устройств и электронной системы. Электрооборудование включает в себя следующие устройства и системы:

  • аккумуляторную батарею;
  • генератор;
  • систему зажигания;
  • световую оптику и систему освещения салона;
  • приводы электродвигателей вентиляторов, стеклоочистителей, стеклоподъёмников и других устройств;
  • обогрев стёкол и салона;
  • всю электронику автоматической коробки передач, бортового компьютера и защитных систем (ABS, SRS), управления двигателем и других;
  • гидроусилитель руля;
  • противоугонную сигнализацию;
  • звуковой сигнал.

Это неполный перечень устройств, входящих в электрооборудование авто и потребляющих электроэнергию.

Устройство кузова автомобиля и всех его составных частей необходимо знать каждому водителю, чтобы поддерживать машину всегда в исправном состоянии.

Екатеринбург

ОСНОВНЫЕ ЧАСТИ АВТОМОБИЛЯ И ИХ НАЗНАЧЕНИЕ.. 2

ПРИНЦИПЫ КЛАССИФИКАЦИИ АВТОМОБИЛЕЙ ОСНОВНЫХ ТИПОВ.. 2

ИНДЕКСАЦИЯ (ОБОЗНАЧЕНИЕ) АВТОМОБИЛЕЙ.. 2

ТРЕБОВАНИЯ ПРЕДЪЯВЛЯЕМЫЕ К КОНСТРУКЦИИ АВТОМОБИЛЯ.. 2

ВИДЫ БЕЗОПАСНОСТИ АВТОМОБИЛЕЙ.. 2

ТИПАЖ ОТЕЧЕСТВЕННЫХ ПРИЦЕПОВ.. 2

РОТОРНО – ПОРШНЕВОЙ ДВИГАТЕЛЬ ВАНКЕЛЯ.. 2

УСТРОЙСТВО РОТОРНО – ПОРШНЕВОГО ДВИГАТЕЛЯ.. 2

АВТОМОБИЛИ С РПД ВАНКЕЛЯ.. 2

НАЗНАЧЕНИЕ, ТИПЫ, ОБЩЕЕ УСТРОЙСТВО КОНСТРУКЦИЙ ВАРИАТОРОВ.. 2

НАЗНАЧЕНИЕ, ТИПЫ, ОБЩЕЕ УСТРОЙСТВО АНТИБЛОКИРОВОЧНЫХ СИСТЕМ ТОРМОЗОВ 2

СИСТЕМА КОНТРОЛЯ ДАВЛЕНИЯ В ШИНАХ.. 2

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ... 2


ОСНОВНЫЕ ЧАСТИ АВТОМОБИЛЯ И ИХ НАЗНАЧЕНИЕ

Автомобиль состоит из трех частей:

3) двигатель

Кузов автомобиля предназначен для размещения грузов, водителя и пассажиров. У грузовых автомобилей кузов включает кабину и грузовую платформу. У легковых автомобилей кузов представляет собой несущую пространственную систему, так как является одновременно помещением для пассажиров и груза, а также основанием для крепления двигателя, агрегатов трансмиссии, ходовой части и механизмов управления.

Рис – 1 кузов легкового автомобиля

Рис – 2 кузов грузового автомобиля

Шасси – это совокупность агрегатов трансмиссии, ходовой части и механизмов управления


Рис – 3 шасси автомобиля

Трансмиссия представляет собой совокупность механизмов, передающих вращающий момент от коленчатого вала двигателя к ведущим колесам, а также изменяющих вращающий момент и частоту вращения ведущих колес по величине и направлению.
Трансмиссия состоит из:

1) сцепления

2) коробки перемены передач

3) главной передачи

4) карданной передачи (для заднеприводных автомобилей)

5) дифференциала

6) привода колес (полуосей, шарниров равных угловых скоростей)


Рис – 4 схема трансмиссии

Сцепление необходимо для кратковременного разъединения двигателя и трансмиссии при переключении передач и для плавного их соединения при трогании с места.



Рис – 5 сцепление

Коробка перемены передач предназначена для изменения вращающего момента на ведущих колесах, скорости и направления движения автомобиля путем ввода в зацепление различных пар шестерен.


Рис – 6 коробка перемены передач

Главная передача служит для увеличения крутящего момента и изменения его направления под прямым углом к продольной оси автомобиля.
С этой целью главную передачу выполняют из конических шестерен. В зависимости от числа шестерен главные передачи разделяют на одинарные конические, состоящие из одной пары шестерен, и двойные, состоящие из пары конических и пары цилиндрических шестерен.

Одинарные конические, в свою очередь, подразделяют на простые и гипоидные передачи.

Рис – 7 типы главной передачи:
1 - ведущая коническая шестерня, 2 – ведомая коническая шестерня,
3 - ведущая цилиндрическая шестерня, 4 - ведомая цилиндрическая шестерня.

Одинарные конические простые передачи применяют преимущественно на легковых автомобилях и грузовых автомобилях малой и средней грузоподъемности. В этих передачах ведущая коническая шестерня 1 соединена с карданной передачей, а ведомая 2 с коробкой дифференциала и через механизм дифференциала с полуосями. (Рис – 7 а)
Для большинства автомобилей одинарные конические передачи имеют зубчатые колеса с гипоидным зацеплением. Гипоидные передачи по сравнению с простыми обладают рядом преимуществ: они имеют ось ведущего колеса, расположенную ниже оси ведомого, что позволяет опустить ниже карданную передачу, понизить пол кузова легкового автомобиля. Вследствие этого снижается центр тяжести и повышается устойчивость автомобиля. Кроме того, гипоидная передача имеет утолщенную форму основания зубьев шестерен, что существенно повышает их нагрузочную способность и износостойкость. Но это обстоятельство обусловливает применение для смазки шестерен специального масла (гипоидного), рассчитанного для работы в условиях передачи больших усилий, возникающих в контакте между зубьями шестерен. (Рис – 7 б)
Двойные главные передачи (Рис – 7 в) устанавливают на автомобилях большой грузоподъемности для увеличения общего передаточного числа трансмиссии и повышения передаваемого крутящего момента.

Карданная передача предназначена для передачи крутящего момента между валами, расположенными под углом друг к другу.



Рис – 8 карданная передача


Дифференциал служит для распределения подводимого к нему вращающего момента между валами и обеспечивает возможность их вращения с неодинаковыми угловыми скоростями.

При движении автомобиля на повороте внутреннее колесо каждой оси проходит меньшее расстояние, чем ее наружное колесо, а колеса одной оси проходят разные пути по сравнению с колесами других осей.

Неодинаковые пути проходят колеса при движении по неровностям на прямолинейных участках и на повороте, а также в случае прямолинейного движения по ровной дороге при разных радиусах качения колес, например при неодинаковом давлении воздуха в шинах и износе шин или неравномерном распределении груза на автомобиле.

Рис – 9 дифференциал


Привод колес обеспечивает передачу крутящего момента от дифференциала к ведущим колесам.

Рис – 10 шарнир равных угловых скоростей


Рис – 11 полуось


Ходовая часть предназначена для перемещения автомобиля по дороге с определенным уровнем комфорта без тряски и вибраций. Ходовая часть автомобиля состоит из несущего основания (кузов или рама) передней и задней подвески и колес.

Подвеска - это система устройств для упругой связи остова автомобиля с его колесами, гасит колебания кузова, смягчает и поглощает удары колес о неровности дороги. Она бывает зависимой и независимой.

На автомобилях устанавливают дисковые колеса с пневмати­ческими шинами. В результате сцепления ведущих колес с грун­том их вращательное движение преобразуется в поступательное движение автомобиля. По назначению колеса делят на ведущие, управляемые ведомые и комбинированные (одновременно ведущие и управляемые).


Рис – 12 ходовая часть автомобиля

Рулевое управление предназначено для изменения направле­ния движения автомобиля посредством поворота передних колес.
Рулевой механизм осуществляет передачу усилия от водителя к рулевому приводу и облегчает поворот рулевого колеса. Различают несколько типов рулевых механизмов: червяк – ролик, рейка – сек­тор и винт – гайка.

Рулевой механизм типа червяк – ролик. Его применяют на не­ которых автомобилях среднего класса, имеющих механическое ру­левое управление.


Рис – 13 рулевой механизм червяк – ролик

Рулевой механизм типа винт - гайка. Такой механизм применя­ют при механическом или гидромеханическом управлении. Меха­ническое управление используется на автомобилях малого класса, а на автомобилях средней и большой грузоподъемности применя­ют рулевое управление с гидроусилителем.


Рис – 14 рулевой механизм винт - гайка
Основной частью его является картер 1, имеющий форму цилиндра. Внутри цилиндра размещены поршень - рейка 10 с жестко закрепленной в нем гайкой 3. Гайка имеет внутреннюю нарезку в виде полукруглой канавки, куда заложены шарики 4. Посредством шариков гайка зацеплена с винтом 2, который, в свою очередь, соединен с рулевым валом 5. В верхней части картера к нему крепится корпус 6 клапана управления гидроусилителем. Управляющим элементом в клапане является золотник 7. Исполнительным механизмом гидроусилителя служит поршень-рейка 10, уплотненный в цилиндре картера с помощью поршневых колец. Рейка поршня соединена нарезкой с зубчатым сектором 9 вала 8 сошки.
Вращение рулевого вала преобразуется передачей рулевого механизма в перемещение гайки - поршня по винту. При этом зубья рейки поворачивают сектор и вал с закрепленной на нем сошкой, благодаря чему происходит поворот управляемых колес. При работающем двигателе насос гидроусилителя подает масло под давлением в гидроусилитель, вследствие чего при совершении поворота усилитель развивает дополнительное усилие, приклады­ваемое к рулевому приводу. Принцип действия усилителя основан на использовании давления масла на торцы поршня - рейки, которые создают дополнительную силу, передвигающую поршень и облегчающую поворот управляемых колес.

Рулевой механизм сектор – рейка.


Рис – 15 сектор рейка

Реечный рулевой механизм является самым распространенным типом механизма, устанавливаемым на легковые автомобили. Реечный рулевой механизм включает шестерню и рулевую рейку. Шестерня устанавливается на валу рулевого колеса и находится в постоянном зацеплении с рулевой (зубчатой) рейкой. Работа реечного рулевого механизма осуществляется следующим образом. При вращении рулевого колеса рейка перемещается вправо или влево. При движении рейки перемещаются присоединенные к ней тяги рулевого привода и поворачивают управляемые колеса.

Реечный рулевой механизм отличает простота конструкции, соответственно высокий КПД, а также высокая жесткость. Вместе с тем, данный тип рулевого механизма чувствителен к ударным нагрузкам от дорожных неровностей, склонен к вибрациям. В силу своих конструктивных особенностей реечный рулевой механизм устанавливается на переднеприводных автомобилях с независимой подвеской управляемых колес.

Тормозная система

Для снижения скорости движения, остановки и удержания в не­ подвижном состоянии автомобили оборудуют тормозной систе­мой. Различают следующие виды тормозных систем: стояночную, которая служит для удержания машины на склоне, и рабочую, необходимую для снижения скорости движения машины и ее полной остановки с необходимой эффективностью. Тормозная система состоит из тормозных механизмов и их при­вода. Наибольшее рас­пространение получили фрикционные тормоза, принцип действия которых основан на использовании сил трения между неподвиж­ными и вращающимися деталями. Фрикционные тормоза могут быть барабанными и дисковыми. В барабанном тормозе силы тре­ния создаются на внутренней цилиндрической поверхности вра­щения, а в дисковом на боковых поверхностях вращающегося диска.

Гидравлическая тормозная система


Рис – 16 гидравлическая тормозная система

1 - тормозной механизм переднего колеса;

2 - трубопровод контура «левый передний - правый задний тормозные механизмы»;

3 - главный цилиндр гидропривода тормозных механизмов;

4 - трубопровод контура «правый передний - левый задний тормозные механизмы»;
5 - бачок главного цилиндра;
6 - вакуумный усилитель;

7 - тормозной механизм заднего колеса;

8 - упругий рычаг привода регулятора давления;

9 - регулятор давления;
10 - рычаг привода регулятора давления;
11 - педаль тормозной системы

Действует тормозная система следующим образом. Когда водитель нажимает ногой на тормозную педаль, перемещаемый ею поршень в главном тормозном цилиндре выжимает жидкость в колесные тормозные (рабочие) цилиндры через вакуумный усили­тель. Размещенные в рабочих цилиндрах поршни под действием жидкости прижимают колодки колесного тормоза к барабану ко­леса и замедляют его вращение.
Гидровакуумный усилитель облегчает управление тормозами автомобиля, используя разрежение (вакуум), возникающее во вса­сывающем трубопроводе двигателя. Усилитель при торможении увеличивает давление в системе на 4,5... 5,0 МПа.


Пневматическая тормозная система


Рис – 17 пневматическая тормозная система

Устройство тормозной системы с пневматическим тормозным приводом автомобиля ЗИЛ-130 входят:
- тормозные механизмы задних 4 и передних 14 колес,
- компрессор 1,
- баллоны 3 для хранения сжатого воздуха,
- тормозные камеры задних 5 и передних 13 колес,
тормозной кран 10,

Тормозная педаль 11,
- манометры 2,
- соединительные трубопроводы и шланги 9,
- трубопровод 6,
- разобщительный кран 8
- соединительная головка 7 для подвода воздуха к тормозной системе прицепа.

Принцип работы: компрессор 1 засасывает воздух из атмосферы, сжимает его и подает в стальные баллоны 3, где он хранится под давлением 0,7-0,9 МПа. При нажатии водителем на тормозную педаль в тормозном кране открывается впускной клапан и сжатый воздух из баллонов по трубопроводам и шлангам поступает в тормозные камеры 5 и 14 и через них воздействует на колесные тормозные механизмы, затормаживая колеса.

Чтобы продолжить движение, водитель отпускает тормозную педаль, поступление воздуха к тормозным камерам прекращается, а имевшийся там воздух удаляется через выпускной клапан тормозного крана в атмосферу.


Двигатель
Двигатель - устройство, преобразующее энергию сгорания топлива в механическую работу.
На автомобилях устанавливают поршневые двигатели внутреннего сгорания (ДВС), у которых топливо сгора­ет внутри цилиндра. Действие ДВС основано на использовании свойства газов к рас­ширению при нагревании.


Рис – 18 рядный четырех цилиндровый двигатель в разрезе


Рис – 19 V образный восьми цилиндровый двигатель

Автомобильные двигатели различают:

По способу приготовления горючей смеси с внешним смесеобразованием (карбюраторные, инжекторные, га­зовые двигатели) и с внутренним смесеобразованием (дизели);

По роду применяемого топлива - бензиновые (работающие на бензине), газовые (на горючем газе) и дизели (работающие на дизельном топливе);

По способу охлаждения - с жидкостным и воздушным ох­лаждением;
- по расположению цилиндров – рядные, V- образные оппозитные;
- по способу воспламенения горючей (рабочей) смеси - с принудительным зажиганием от электрической искры (карбюраторные и инжекторные двигатели) или с самовоспламенением от сжатия (дизели).

Основные механизмы двигателя:
- Кривошипно - шатунный механизм преобразует прямолинейное движение поршней во вра­щательное движение коленчатого вала.

Механизм газораспределения управляет работой клапа­нов, что позволяет в определенных положениях поршня впускать воздух или горючую смесь в цилиндры, сжимать их до определен­ного давления и удалять оттуда отработавшие газы.

Основные системы двигателя:

Система питания служит для подачи очищенного топлива и воздуха в цилиндры, а также для отвода продуктов сгорания из цилиндров.
- Система питания дизеля обеспечивает подачу дозированных порций топлива в определенный момент в распыленном состоя­нии в цилиндры двигателя.
- Система зажигания она служит для воспламене­ния рабочей смеси в цилиндрах двигателя в определенный мо­мент.
- Смазочная система необходима для непрерывной подачи масла к трущимся деталям и отвода теплоты от них.
- Система охлаждения предохраняет стенки камеры сгора­ния от перегрева и поддерживает в цилиндрах нормальный тепло­вой режим.

Принцип работы четырехтактного двигателя

Рис – 20 такты четырехтактного двигателя

Рабочий цикл 4-х тактного двигателя состоит из четырех тактов: впуска, сжатия, расширения (рабочего хода) и выпуска.
При впуске поршень опускается из верхней мертвой точки (ВМТ) в нижнюю (НМТ). При этом с помощью кулачков распределительного вала открывается впускной клапан, через который в цилиндр засасывается топливная смесь.

При обратном ходе поршня (из НМТ в ВМТ) происходит сжатие топливной смеси, сопровождающееся ростом ее температуры.

Перед самым концом сжатия между электродами свечи загорается искра, поджигающая топливную смесь, которая, сгорая, образует горючие газы, толкающие поршень вниз. Происходит рабочий ход, при котором совершается полезная работа.

После перехода поршня к НМТ открывается выпускной клапан, позволяя двигающемуся вверх поршню вытолкнуть отработавшие газы из цилиндра. Происходит выпуск. В верхней мертвой точке выпускной клапан закрывается, и цикл повторяется снова.

Понравилось? Лайкни нас на Facebook