Уравнение электропривода. Механика электропривода. Основное уравнение движения. Приведение моментов и сил

Расчетная схема механической части электропривода

Механика электропривода

Электропривод представляет собой электромеханическую систему, состоящую из электрической и механической части. В этой главе мы рассмотрим механическую часть ЭП.

В общем случае механическая часть ЭП включает в себя механическую часть электромеханического преобразователя (ротор или якорь электродвигателя), преобразователь механической энергии (редуктор или механическую передачу) и исполнительный орган рабочей машины (ИО РМ). Поскольку наша задача - это приведение в движение ИО РМ, основополагающими для выбора и расчета ЭП являются характеристики рабочей машины и особенности механической части ЭП .

В общем случае механическая часть ЭП представляет собой сложную механическую систему, состоящую из нескольких вращающихся и поступательно движущихся с различными скоростями звеньев, имеющими различные массы и моменты инерции, соединенные упругими связями (малой или конечной жесткости). При этом в кинематических передачах часто имеют место зазоры.

На эту сложную механическую систему действуют различные по направлению и величине внешние моменты и силы, которые, в свою очередь, часто зависят от времени, угла поворота механизма, скорости движения и других факторов. Поскольку эта механическая система является неотъемлемой частью ЭП, необходимо знать её характеристики и иметь достаточно точное для инженерных расчетов математическое описание. Механическая часть ЭП описывается в общем случае системой нелинейных дифференциальных уравнений в частных производных с переменными коэффициентами. Для описания механической части ЭП наиболее удобным является использование уравнений Лагранжа второго рода.

Учитывая, что движение механической системы определяется наибольшими массами, наименьшими жесткостями и наибольшими зазорами; очень часто сложную механическую систему можно свести к двух-трех- массовой модели, которая может быть использована при расчете систем ЭП. (Это системы с гибкими валами, системы, подверженные резким динамическим нагрузкам, точные следящие системы).

В большинстве случаев механическая часть состоит из звеньев большой жесткости с жесткими связями, а зазоры мы стремимся свести к нулю, и тогда возникает возможность представить расчетную схему механической части как одномассовую систему, укрепленную на валу ЭД, при этом мы пренебрегаем упругостью механических связей и зазорами в передаче. Такая модель широко применяется для инженерных расчетов.

Для анализа движения механической части ЭП осуществляется переход от реальной кинематической схемы к расчетной, в которой массы и моменты инерции движущихся элементов их жесткости, а также силы и моменты, действующие на эти элементы, заменены эквивалентными величинами, приведенными к одной и той же скорости (чаще всего к скорости движения ЭД). Условием соответствия полученной расчетной схемы реальной механической части ЭП является выполнение закона сохранения энергии.



Рис. 2.1. Кинематическая схема подъемного устройства

Переход от реальной схемы (рис. 2.1) к расчетной (рис. 2.2) называют приведением. Все параметры механической части приводят к валу ЭД (в некоторых случаях к валу редуктора).

Рис. 2.2. Расчетная схема подъемного устройства

Приведение моментов инерции и масс осуществляется с помощью следующих известных из механики формул:

Для вращательного движения, (2.1)

Для поступательного движения, (2.2)

Суммарный момент инерции системы, (2.3)

где – момент инерции двигателя, кг∙м 2 ;

– момент инерции k-ого вращающегося элемента, кг∙м 2 ;

– масса i-ого поступательно движущегося элемента, кг;

, – приведённые моменты инерции k и i элементов, кг∙м 2 .

Моментом инерции тела относительно оси, проходящей через центр тяжести, называют сумму произведений массы каждой элементарной частицы тела на квадрат расстояния от соответствующей частицы до оси вращения

где R j – радиус инерции

i k – передаточное число кинематической цепи между валом двигателя и k-ым элементом,

– угловые скорости вала двигателя и k-ого элемента, с -1 .

где – радиус приведения поступательно движущегося i элемента к валу двигателя, м,

– скорость движения поступательно движущегося i элемента, м/с.

Радиусом инерции называют расстояние от оси вращения (проходящей через центр тяжести), на котором надо поместить массу рассматриваемого тела, сосредоточенную в одной точке, чтобы удовлетворить равенство

Приведение моментов и сил , действующих на элементы к валу двигателя, осуществляются следующим образом:

Первый вариант: передача энергии от двигателя к рабочей машине

Для вращательно движущихся элементов, (2.6)

Для поступательно движущихся элементов. (2.7)

Второй вариант: энергия передается от рабочей машины к двигателю

Для вращательно движущихся элементов, (2.8)

Для поступательно движущихся элементов. (2.9)

В этих выражениях:

– момент, действующий на k элемент, Н∙м;

– сила, действующая на i элемент, Н;

– приведённый момент (эквивалентный), Н∙м;

– КПД кинематической цепи между k и i элементом и валом двигателя.

С помощью приведенных расчётных схем осуществляется определение параметров, устойчивость и характер протекания переходных процессов в механической системе.

Динамику ЭП, как правило, определяет механическая часть привода как более инерционная. Для описания переходных режимов необходимо составить уравнение движения ЭП учитывающее все силы и моменты, действующие в переходных режимах .

Наиболее удобным методом составления уравнений движения механизмов является метод уравнений Лагранжа второго рода. Сложность уравнения движения будет зависеть от того, какую расчетную схему механической части привода мы выбрали. В большинстве практических случаев выбирают одномассовую, расчетную схему, сводя всю систему электродвигатель-рабочая машина (ЭД-РМ) к жесткому приведенному механическому звену.

Одномассовая система (жесткое приведённое звено) является интегрирующим звеном. В том случае, когда в кинематической цепи ЭП содержатся нелинейные связи, параметры которых зависят от положения отдельных звеньев механизма (пары кривошип – шатун, кулисный механизм и так далее) движение одномассовой системы описывается нелинейным дифференциальным уравнением с переменными коэффициентами. Входящие в это уравнение моменты в общем случае могут быть функциями нескольких переменных (времени, скорости, угла поворота).

Как следует из структурной схемы, момент двигателя представляет собой управляющее воздействие, а момент сопротивления - возмущающее воздействие.

Получило название уравнения движения электропривода.

В общей форме записи оно имеет вид:

где - угловое ускорение одномассовой системы.

В уравнении движения «+» ставится в том случае, когда направление М или М с совпадает с направлением скорости вращения ω , а знак «-», когда они направлены противоположно.

Знак «+» перед М соответствует двигательному режиму работы электрического привода : двигатель преобразовывает ЭЭ в МЭ, развивает вращающий момент М и вращает одномассовую систему в направлении вращающего момента.

Знак «-» перед М соответствует режиму электрического торможения . Для перевода в этот режим работающего электропривода схема его включения или её параметры изменяется таким образом, что изменяется на противоположное направление вращающего момента М. А., поскольку направление вращения сохраняется под действием инерционных сил, вращающий момент двигателя начинает тормозить движение одномассовой системы. Двигатель переходит в генераторный режим работы. Он забирает запасённую в механической части привода МЭ, снижая тем самым скорость вращения, преобразовывает её в ЭЭ и либо возвращает ЭЭ в сеть, либо она расходуется на нагрев двигателя.

Знак «+» перед М с говорит о том, что М с способствует вращению.

Знак «-» говорит о том, что препятствует.

Все моменты сопротивления можно разделить на две категории: 1 - реактивные М с ; 2 - активные или потенциальные М с .

В первую категорию входят моменты сопротивления, появление которых связано с необходимостью преодолевать трение. Они всегда препятствуют движению электропривода и изменяют свой знак при изменении направления вращения.

Во вторую категорию входят моменты от силы тяжести, а также от растяжения, сжатия или скручивания упругих тел. Они связаны с изменением потенциальной энергии отдельных элементов кинематической схемы. Поэтому они могут как препятствовать, так и способствовать движению, не изменяя своего знака при изменении направления вращения.

Правая часть уравнения движения носит название динамического момента М д и проявляется только во время переходных режимов. При М д >0 и , т.е. имеет место ускорение механической части привода. При М д <0 и имеет место замедление. При М = М с, М д = 0 и т.е. в данном случае привод работает в установившемся режиме, т.е. механическая часть вращается с постоянной скоростью.

На примере электропривода подъёмной лебёдки можно рассмотреть все четыре формы записи уравнения движения электропривода.


В первом случае электропривод включён в направлении подъёма груза. Двигатель работает в двигательном режиме. Груз, подвешенный на крюке, создаёт момент сопротивления, препятствующий вращению.

Тогда уравнение движения будет иметь вид:

Во втором случае в конце подъёма груза двигатель переводится в режим электрического торможения и его момент, как и момент сопротивления, будет препятствовать вращению.

Уравнение движения в этом случае имеет вид:

В третьем случае электропривод включён в направлении опускания груза, т.е. двигатель работает в двигательном режиме. Поскольку момент сопротивления, создаваемый поднятым грузом, является активным, то при опускании груза он будет не препятствовать, а способствовать вращению.

Уравнение движения имеет вид:

В четвёртом случае в конце опускания груза двигатель опять переводится в режим электрического торможения, а момент сопротивления продолжает вращать двигатель в направлении спуска.

В этом случае уравнение движения имеет вид:

При ускорении или замедлении электропривод работает в переходном режиме, вид которого полностью определяется законом изменения динамического момента М д. Последний, являясь функцией вращающего момента М и момента сопротивления М с, может зависеть от скорости, времени или положения рабочего органа ТМ.

При исследовании переходного режима находят зависимости М(t) , ω(t) а также длительность переходного режима. Последнее представляет особый интерес, так как время ускорения и замедления могут существенно влиять на производительность механизма.

Определение времени работы электропривода в переходном режиме основано на интегрировании уравнения движения электропривода.

Для режима пуска, когда имеет место ускорение привода, уравнение движения электропривода имеет вид:

Разделив переменные уравнения, получим:

Тогда время, необходимое для увеличения скорости от ω 1 до ω 2 , t 1,2 можно найти, проинтегрировав последние уравнения:

Для решения этого интеграла необходимо знать зависимости моментов двигателя и механизма от скорости. Такие зависимости ω=f(М) и ω=f(М с) называются механическими характеристиками соответственно двигателя и технологической машины.

Механическую характеристику всех ТМ можно разделить на четыре категории: 1- величина М с не зависит от скорости. Такой характеристикой обладают подъёмные механизмы, конвейеры с постоянной массой перемещаемого материала, а также все механизмы, у которых основным моментом сопротивления является момент трения; 2 - М с линейно возрастает с ростом скорости. Такую характеристику имеет генератор постоянного тока с независимым возбуждением; 3 - М с нелинейно возрастает с ростом нагрузки. Такую характеристику имеет вентилятор, гребной винт корабля, центробежный насос; 4 - М с нелинейно убывает с возрастанием скорости. Такой характеристикой обладают некоторые металлорежущие станки.

Механические характеристики двигателей подробно будут рассматриваться в дальнейшем. Однако, если пуск двигателя происходит в системе с обратной связью по моменту, то момент двигателя не зависит от скорости.

Приняв М и М с не зависящими от скорости величинами, получаем простейший случай решения интеграла. Величина времени разгона t 1,2 будет равна:

Для режима электрического торможения, когда имеет место замедление привода, уравнение движения имеет вид:

Разделив переменные, получим:

Время, необходимое для уменьшения скорости от ω 2 до ω 1 t 2,1 , будет равно:

Знак «-» из подынтегрального выражения можно убрать, поменяв местами пределы интегрирования. Получим:

При М=const , М с =const время торможения будет равно:

Если величины М и М с находятся в сложной зависимости от скорости, то уравнение движения аналитически не решается. Необходимо использовать приближённые методы решения.

Для проектирования электропривода необходимо знать кинематику и эксплуатационные условия рабочей машины. Нагрузка на валу электродвигателя слагается из статической и динамической нагрузок. Первая обусловливается полезными и вредными сопротивлениями движению (от сил трения, резания, веса и т. п.); вторая возникает применениях кинетической энергии в системе привода вследствие изменения скорости движения тех или иных частей устройства. В соответствии с этим момент, развиваемый двигателем,

В этом выражении М ст - статический момент, обусловленный силами полезных и вредных сопротивлений. Он может не зависеть от частоты вращения (рис. 16.2, прямая 1), если создается трением, силами сопротивления при резании металла и т. п., или может в какой-то степени зависеть от частоты вращения. Например, у центробежного насоса, питающего систему с постоянным напором, статический момент складывается из постоянной составляющей и составляющей, пропорциональной квадрату частоты вращения (рис. 16.2, кривая 2). Момент может зависеть от скорости линейно (3) и нелинейно (4).

Входящая в уравнение моментов (16.1) величина

называется динамическим моментом. Этот момент может быть как положительным, так и отрицательным.

Величина J, которой M ДИН пропорционален, называется моментом инерции. Это - взятая для всего тела сумма произведений масс m k отдельных частиц тела на квадрат расстояния R k соответствующей частицы от оси вращения:

Обычно момент инерции удобно выразить как произведение массы тела на квадрат радиуса инерции R ин т. е.

где R ин - расстояние от оси вращения, на котором нужно сосредоточить в одной точке всю массу тела, чтобы получить момент инерции, равный фактическому при распределенной массе. Радиусы инерции простейших тел указываются в справочных таблицах.

Вместо момента инерции в расчетах приводов применялось понятие махового момента - величины, связанной с моментом инерции простым соотношением:



где G - вес тела; D = 2R ин - диаметр инерции; g - ускорение силы тяжести; GD 2 - маховой момент.

Моменты инерции роторов и якорей электродвигателей обычно указываются в каталогах. Желательно, чтобы приводной электродвигатель был соединен с рабочим органом рабочей машины (например, с резцом) непосредственно, без каких-либо промежуточных зубчатых или ременных передач. Однако в большом числе случаев это неосуществимо из-за того, что рабочий орган должен иметь относительно небольшую частоту вращения (50-300 об/мин) при высокоскоростном электродвигателе. Изготовлять специальный тихоходный электродвигатель невыгодно. Он будет иметь слишком большие габариты и массу. Рациональнее с тихоходным приводом соединить через редуктор нормальный электродвигатель (750-3000 об/мин).

Но при расчетах сложной системы привода с вращательными или" поступательными движениями и различными скоростями отдельных ее элементов целесообразно заменить ее приведенной системой - упрощенной системой, состоящей из одного элемента, вращающегося с частотой электродвигателя. При переходе к приведенной системе от действительной моменты в системе пересчитываются таким образом, чтобы остались неизменными энергетические условия.

Например, двигатель, угловая скорость вала которого ω дв, соединен через одноступенчатую зубчатую передачу с рабочей машиной (рис. 16.3), угловая скорость которой ω р _ м. Если пренебречь потерями в передаче (они учитываются в приведенной системе), то из условия неизменности мощности следует:


где М ст - искомый статический момент рабочей машины, приведенный к валу двигателя (т. е. угловой скорости вала двигателя); М р м - действительный статический момент рабочей машины на ее валу; k пер = ω дв /ω р, м - передаточное число от двигателя к рабочей машине. Если рабочий орган под действием силы F p , M выполняет не вращательные, а поступательные движения со скоростью υ P , M , то на основании неизменности мощности

и, следовательно, искомый приведенный статический момент

В приведенной системе должны быть представлены и приведенные моменты инерции.

Приведенный момент инерции системы есть момент инерции системы, состоящей только из элементов, вращающихся с частотой вращения вала двигателя ω дв, но обладающих запасом кинетической энергии, равным запасу кинетической энергии действительной системы. Из условия неизменности кинетической энергии следует, что для системы, состоящей из соединенных через одну зубчатую передачу двигателя и вращающейся с угловой скоростью ω р, м рабочей машины, обладающей моментом инерции J P , м,

или искомый приведенный момент инерции системы

Таким образом, для сложного привода в уравнениях (16.1) и (16.4) подразумеваются приведенные значения статических моментов инерции. Если известен момент М, выраженный в Н-м, и частота вращения п, об/мин, то соответствующая мощность Р, кВт,

где коэффициент 9550 = 60-10 3 /2л не имеет размерности.

Ремонтом ежедневно занимаются тысячи людей во всем мире. При его выполнении каждый начинает задумываться о тех тонкостях, которые сопутствуют ремонту: в какой цветовой гамме выбрать обои, как подобрать шторы в цвет обоев, правильно расставить мебель для получения единого стиля помещения. Но о самом главном редко кто задумывается, а этим главным является замена электропроводки в квартире. Ведь если со старой проводкой что-то произойдет, то квартира потеряет всю свою привлекательность и станет совершенно не пригодной для жизни.

Как заменить проводку в квартире знает любой электрик, но это под силу любому обычному гражданину, однако при выполнении данного вида работ ему следует выбирать качественные материалы, чтобы получить безопасную электрическую сеть в помещении.

Первое действие, которое необходимо выполнить, спланировать будущую проводку . На данном этапе нужно определить, в каких именно местах будут проложены провода. Также на данном этапе можно вносить любые коррективы в существующую сеть, что позволит максимально комфортно в соответствии с потребностями хозяев расположить светильники и .

12.12.2019

Узкоотраслевые приборы трикотажной подотрасли и их техническое обслуживание

Для определения растяжимости чулочно-носочных изделий применяется прибор, схема которого показана на рис. 1.

В основе конструкции прибора лежит принцип с автоматическим уравновешиванием коромысла упругими силами испытываемого изделия, действующими с постоянной скоростью.

Весовое коромысло представляет собой равноплечий круглый стальной стержень 6, имеющий ось вращения 7. На его правый конец крепятся с помощью байонетного замка лапки или раздвижная форма следа 9, на которые одевается изделие. На левом плече шарнирно укреплена подвеска для грузов 4, а его конец заканчивается стрелкой 5, показывающей равновесное состояние коромысла. До начала испытаний изделия коромысло приводят в равновесие подвижной гирей 8.

Рис. 1. Схема прибора для измерения растяжимости чулочно-носочных изделий: 1 —направляющая, 2 — левая линейка, 3 — движок, 4 — подвеска для грузов; 5, 10 — стрелки, 6 — стержень, 7 — ось вращения, 8 — гиря, 9 — форма следа, 11— растягивающий рычаг,

12— каретка, 13 — ходовой винт, 14 — правая линейка; 15, 16 — винтовые шестерни, 17 — червячный редуктор, 18 — соединительная муфта, 19 — электродвигатель


Для перемещения каретки 12 с растягивающим рычагом 11 служит ходовой винт 13, на нижнем конце которого закреплена винтовая шестерня 15; через нее вращательное движение передается ходовому винту. Перемена направления вращения винта зависит от изменения вращения 19, который при помощи соединительной муфты 18 связан с червячным редуктором 17. На вал редуктора посажена винтовая шестерня 16, непосредственно сообщающая движение шестерне 15.

11.12.2019

В пневматических исполнительных механизмах перестановочное усилие создается за счет воздействия сжатым воздухом на мембрану, или поршень. Соответственно различают механизмы мембранные, поршневые и сильфонные. Они предназначены для установки и перемещения затвора регулирующего органа в соответствии с пневматическим командным сигналом. Полный рабочий ход выходного элемента механизмов осуществляется при изменении командного сигнала от 0,02 МПа (0,2 кг/см 2) до 0,1 МПа (1 кг/см 2). Предельное давление сжатого воздуха в рабочей полости — 0,25 МПа (2,5 кг/см 2).

У мембранных прямоходных механизмов шток совершает возвратно-поступательное движение. В зависимости от направления движения выходного элемента они подразделяются на механизмы прямого действия (при повышении давления мембраны) и обратного действия.

Рис. 1. Конструкция мембранного исполнительного механизма прямого действия: 1, 3 — крышки, 2—мембрана, 4 — опорный диск, 5 — кронштейн, 6 — пружина, 7 — шток, 8 — опорное кольцо, 9 — регулировочная гайка, 10 — соединительная гайка


Основными конструктивными элементами мембранного исполнительного механизма являются мембранная пневматическая камера с кронштейном и подвижная часть.

Мембранная пневматическая камера механизма прямого действия (рис. 1) состоит из крышек 3 и 1 и мембраны 2. Крышка 3 и мембрана 2 образуют герметическую рабочую полость, крышка 1 прикреплена к кронштейну 5. К подвижной части относятся опорный диск 4, к которому прикреплена мембрана 2, шток 7 с соединительной гайкой 10 и пружина 6. Пружина одним концом упирается в опорный диск 4, а другим через опорное кольцо 8 в регулировочную гайку 9, служащую для изменения начального натяжения пружины и направления движения штока.

08.12.2019

На сегодняшний день существует несколько видов ламп для . У каждого из них есть свои плюсы и минусы. Рассмотрим виды ламп которые наиболее часто используются для освещения в жилом доме или квартире.

Первый вид ламп – лампа накаливания . Это самый дешевый вид ламп. К плюсам таких ламп можно отнести ее стоимость, простоту устройства. Свет от таких ламп является наиболее лучшим для глаз. К минусам таких ламп можно отнести невысокий срок службы и большое количество потребляемой электроэнергии.

Следующий вид ламп – энергосберегающие лампы . Такие лампы можно встретить абсолютно для любых типов цоколей. Представляют из себя вытянутую трубку в которой находится специальный газ. Именно газ создает видимое свечение. У современных энергосберегающих ламп, трубка может иметь самую разнообразную форму. Плюсы таких ламп: низкое энергопотребление по сравнению с лампами накаливания, дневное свечение, большое выбор цоколей. К минусам таких ламп можно отнести сложность конструкции и мерцание. Мерцание обычно незаметно, но глаза будут уставать от света.

28.11.2019

Кабельная сборка — разновидность монтажного узла. Кабельная сборка представляет собой несколько местных , оконцованных с двух сторон в электромонтажном цехе и увязанных в пучок. Монтаж кабельной трассы, осуществляют, укладывая кабельную сборку в устройства крепления кабельной трассы (рис. 1).

Судовая кабельная трасса - электрическая линия, смонтированная на судне из кабелей (пучков кабелей), устройств крепления кабельной трассы, уплотнительных устройств и т. п. (рис. 2).

На судне кабельную трассу располагают в труднодоступных местах (по бортам, подволоку и переборкам); они имеют до шести поворотов в трех плоскостях (рис. 3). На крупных судах наибольшая длина кабелей достигает 300 м, а максимальная площадь сечения кабельной трассы — 780 см 2 . На отдельных судах с суммарной длиной кабелей свыше 400 км для размещения кабельной трассы предусматривают кабельные коридоры.

Кабельные трассы и проходящие по ним кабели подразделяют на местные и магистральные в зависимости от отсутствия (наличия) устройств уплотнения.

Магистральные кабельные трассы подразделяют на трассы с торцовыми и проходными коробками в зависимости от типа применения кабельной коробки. Это имеет смысл для выбора средств технологического оснащения и технологии монтажа кабельной трассы.

21.11.2019

В области разработки и производства приборов КИПиА американская компания Fluke Corporation занимает одну из лидирующих позиций в мире. Она была основана в 1948 году и с этого времени постоянно развивает, совершенствует технологии в области диагностики, тестирования, анализа.

Инновации от американского разработчика

Профессиональное измерительное оборудование от мультинациональной корпорации используется при обслуживании систем обогрева, кондиционирования и вентиляции, холодильных установок, проверки качества воздуха, калибровки электрических параметров. Фирменный магазин Fluke предлагает приобрести сертифицированное оборудование от американского разработчика. Полный модельный ряд включает:
  • тепловизоры, тестеры сопротивления изоляции;
  • цифровые мультиметры;
  • анализаторы качества электрической энергии;
  • дальномеры, вибромеры, осциллографы;
  • калибраторы температуры, давления и многофункциональные аппараты;
  • визуальные пирометры и термометры.

07.11.2019

Используют уровнемер для определения уровня разных видов жидкостей в открытых и закрытых хранилищах, сосудах. С его помощью измеряют уровень вещества или расстояние до него.
Для измерения уровня жидкости используют датчики, которые отличаются по типу: радарный уровнемер , микроволновый (или волноводный), радиационный, электрический (или емкостный), механический, гидростатический, акустический.

Принципы и особенности работы радарных уровнемеров

Стандартными приборами не определить уровень химически агрессивных жидкостей. Только радарный уровнемер способен его измерить, так как не соприкасается с жидкостью при работе. К тому же радарные уровнемеры более точные по сравнению, например, с ультразвуковыми или с емкостными.

Если все элементы механической системы во всех движениях имеют равную или пропорциональную скорость (вращения или линейную), то такая механическая система может рассматриваться как жесткая, которая может быть приведена к жесткому механическому звену с суммарным приведенным моментом инерции В такой одномассовой системе на тело вращения, например на ротор электродвигателя, действуют следующие моменты:

  • ? М - электромагнитный момент, создаваемый электродвигателем;
  • ? М с - момент сопротивления движению активный, прикладываемый к РО машины. Этот момент создают силы тяжести (например, в электроприводах грузоподъемных лебедок, лифтов и др.), силы ветра (например, электропривод поворота башенных кранов), давление сжатого воздуха (электропривод компрессоров) и др. Моменты активного сопротивления движению могут, как препятствовать движению, так и создавать движение;
  • ? М с - реактивные моменты сопротивления движению, прикладываемые к РО машины. Эти моменты возникают, как реакция на движение РО и всегда препятствуют движению (например, момент от сил резания в приводах главного движения металлорежущих станков, момент от аэродинамических сил в электроприводах вентиляторов и др.), при со = О М г _ = 0. К реактивным моментам относится

с.р момент от сил трения в подшипниках и других элементах кинематической цепи рабочей машины. Момент трения всегда препятствует движению, его отличие от реактивного момента сопротивления состоит в том, что М тр присутствует и при скорости, равной нулю. Более того, М при покое обычно значительно превышает момент трения при движении.

Полный момент сопротивления движения с (его также называют статический момент) равен сумме активного и реактивного моментов сопротивления:

Знаки всех моментов определяет знак скорости вращения: если момент способствует движению - он положителен, если препятствует - он отрицателен. Знак с р всегда отрицательный, знак са может быть отрицательным, если активный момент препятствует движению (например, подъем груза) или положительным, если момент способствует движению (например, спуск груза). Алгебраическая сумма всех моментов определяет результирующий момент сопротивления М , прикладываемый к валу электродвигателя.

Рассмотрим движение электродвигателя, к валу которого приложены: электромагнитный момент, развиваемый электродвигателем М, и момент сопротивления движению с. В соответствии со вторым законом Ньютона (2.3):

где М дин - динамический момент; - суммарный момент инерции.

Уравнение (2.5) называют уравнением движения электропривода. Отметим, что в этом уравнении все моменты приложены к валу двигателя, а момент инерции отражает инерционности всех масс, связанных с валом электродвигателя и совершающих вместе с ним механическое движение.

Для поступательного движения уравнение движения электропривода соответственно принимает вид:

где F - усилие, развиваемое двигателем; F - усилие сопротивления движению на штоке этого двигателя; т - массы подвижных элементов, связанные со штоком двигателя; v - линейная скорость штока двигателя.

Момент М, развиваемый двигателем, зависит от его скорости. Взаимосвязь момента, развиваемого двигателем, и скорости = (со) определяет механические характеристики электропривода (электродвигателя).

Основным параметром, определяющим вид механической характеристики, является жесткость (рис. 2.4)

где Д - приращение момента; Дсо - приращение скорости.

Жесткость Р характеризует способность двигателя воспринимать приложение нагрузки - момента с на его валу. Поскольку обычно с увеличением момента нагрузки скорость уменьшается, то жесткость Р является величиной отрицательной. Если при приложении нагрузки Д скорость Дсо уменьшается незначительно, то механическая характеристика считается жесткой. Если при том же значении прикладываемого момента сопротивления скорость изменяется значительно, то такую характеристику называют мягкой.

Жесткость Р механических характеристик электропривода (двигателя) является важной величиной, характеризующей статические и динамические характеристики электропривода. Если механическая характеристика прямолинейна - 1 на рис. 2.4, то ее жесткость постоянная, равная тангенсу угла наклона характеристики к оси ординат. Если механическая характеристика криволинейна - 2 на рис. 2.4, то жесткость в каждой точке характеристики переменная и определяется тангенсом угла наклона касательной к данной точке характеристики.

Рис. 2.4.

1 - прямолинейная; 2 - криволинейная

Рис. 2.5.

На рис. 2.5 показаны естественные механические характеристики основных видов электродвигателей: 1 - двигатель постоянного тока независимого возбуждения, механическая характеристика прямолинейна, имеет постоянную высокую жесткость; 2 - двигатель постоянного тока последовательного возбуждения, характеристика криволинейна, ее жесткость мала при малых нагрузках и повышается по мере возрастания момента; 3 - асинхронный двигатель, механическая характеристика имеет две части - рабочую с высокой постоянной отрицательной жесткостью и криволинейную с переменной положительной жесткостью; 4 - синхронный двигатель имеет абсолютно жесткую механическую характеристику, при которой скорость не зависит от нагрузки.

Приведенные на рис. 2.5 механические характеристики двигателей называют естественными, так как они соответствуют типовой схеме включения двигателей, номинальному напряжению и частоте питания и отсутствию в цепях обмоток двигателя дополнительных сопротивлений.

Искусственные (или регулировочные) механические характеристики получают, когда для пуска двигателя или регулирования его скорости изменяют параметры питающего напряжения или в цепи обмоток двигателя вводят дополнительные элементы.

Рис. 2.В. Зависимость моментов сопротивления движению от скорости для некоторых рабочих машин

Момент сопротивления движению с, создаваемый на РО машины, также может зависеть от скорости. Эта зависимость - механическая характеристика рабочей машины (мъхантма) с = (со) - индивидуальна для различных типов технологических машин. На рис. 2.6 показаны типичные характеристики для основных типов рабочих машин: 1 - машины с рабочим органом резания, если толщина снимаемого режущим органом слоя постоянна, то момент сопротивления не зависит от скорости; 2 - машины, для которых момент сопротивления определяют главным образом силы трения (например, конвейеры), момент сопротивления постоянный, но при пуске силы трения покоя могут превышать силы трения при движении; 3 - грузоподъемные механизмы, статический момент носит активный характер и не зависит от скорости, особенностью данной характеристики является то, что момент при подъеме груза несколько превышает момент сопротивления при спуске груза, что связано с учетом механических потерь в передачах; 4 - турбомеханизмы (центробежных и осевых вентиляторов и насосов), момент сопротивления этих машин существенно зависит от скорости, для вентиляторов пропорционален квадрату скорости М с = ко) ; 5 - намоточные устройства и другие машины, для которых технологически необходима работа с постоянной мощностью.

Следует отметить, что моменты на валу рабочей машины, определяемые ее механической характеристикой, не учитывают динамической составляющей момента, которая возникает при изменении скорости.

Когда момент, развиваемый двигателем, равен моменту сопротивления движения, то из (2.5) следует, что М = М с, М тш = и

т.е. жесткая механическая система будет работать с постоянной скоростью. Такой режим работы является установившимся. Момент сопротивления движению называют статическим моментом , так как он характеризует установившийся режим работы электропривода.

Рис. 2.7.

Графически условие установившегося режима работы (2.8) определяется точкой пересечения механической характеристики двигателя о)= () с механической характеристикой механизма

с = (со) (рис. 2.7). Выполнение этого условия является обязательным для установившегося режима, но нужно произвести проверку на устойчивость этого режима.

Рассмотрим механическую характеристику асинхронного двигателя (см. рис. 2.7). Момент сопротивления движению - статический момент М с не зависит от скорости - жесткость этой характеристики (З с = . Характеристики двигателя и статического момента пересекаются в двух точках А и В. Если при работе в точке А скорость по какой-либо причине возрастет, то станет меньше с, дин А. Если скорость при работе в точке А уменьшится, то момент двигателя станет больше с и скорость вернется в точку А. Работа в установившемся режиме в точке А будет устойчивой.

При работе в точке В картина обратная. Если скорость меняется в сторону увеличения, то момент двигателя будет больше с, и ускорение будет продолжаться. Если скорость отклоняется в сторону уменьшения, то момент двигателя станет меньше с, и двигатель остановится. Установившийся режим в точке В неустойчив. Условие устойчивости установившегося режима может быть сформулировано как р А это условие выполняется, в точке В не выполняется.

Понравилось? Лайкни нас на Facebook