Белки, их строение и функции. Свойства природных белков. Белковая инженерия Эколого-биологическая роль белков в клетках

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.сайт/

1. Болезни, обусловленные нарушением синтеза функционирования белков

Белки являются теми химическими соединениями, деятельность которых ведет к формированию нормальных признаков здорового организма. Прекращение синтеза того или иного белка или изменение его структуры ведет к формированию патологических признаков и развитию болезней. Назовем несколько заболеваний, обусловленных нарушением структуры или интенсивности синтеза белков.

Классическая гемофилия обусловлена отсутствием в плазме крови одного из белков, участвующих в свертывании крови; у больных людей наблюдается повышенная кровоточивость

Серповидноклеточная анемия обусловлена изменением первичной структуры гемоглобина: у больных людей эритроциты имеют серповидную форму, число эритроцитов уменьшено в результате ускоренного процесса их разрушения; гемоглобин связывает и переносит меньшее, чем в норме, количество кислорода.

Гигантизм обусловлен повышенным количеством гормона роста; больные имеют чрезмерно высокий рост.

Дальтонизм обусловлен отсутствием пигмента колбочек сетчатки, участвующем в формировании восприятия цвета; дальтоники не различают некоторые цвета.

Диабет связан с так называемой недостаточностью гормона инсулина, которая может быть обусловлена разными причинами: уменьшением количества или изменением строения выделяемого инсулина, уменьшением количества или изменением структуры рецептора инсулина. У больных людей наблюдается повышенное количество глюкозы в крови и развиваются сопутствующие этому патологические признаки.

Злокачественная холестеринемия обусловлена отсутствием в цитоплазматической мембране клеток нормального рецепторного белка, узнающего транспортный белок, переносящий молекулы холестерина; в организме больных нужный клеткам холестерин не проникает в клетки, а в больших количествах скапливается в крови, откладывается в стенке кровеносных сосудов, что ведет к их сужению и быстрому развитию гипертонии в раннем возрасте.

Прогрессирующая ксеродерма обусловлена нарушением работы ферментов, которые в норме осуществляют восстановление в клетках кожи участков ДНК, повреждающихся УФ-лучами; больные не могут находиться на свету, так как в этих условиях у них возникают многочисленные кожные язвы и воспаление.

8. Муковисцидоз обусловлен изменением первичной структуры белка, формирующего в наружной плазматической мембране канал для ионов СГ; у больных в воздухоносных путях скапливается большое количество слизи, что ведет к развитию заболеваний органов дыхания.

2. Протеомика

Ушедший XX век характеризовался возникновением и бурным развитием научных дисциплин, которые расчленяли биологическое явление на составляющие его компоненты и стремились объяснить явления жизни через описание свойств молекул, в первую очередь биополимеров, входящих в состав живых организмов. Этими науками были биохимия, биофизика, молекулярная биология, молекулярная генетика, вирусология, клеточная биология, биоорганическая химия. В настоящее время развиваются научные направления, которые пытаются, исходя из свойств составляющих, дать целостную картину всего биологического явления. Для этой новой, интегративной стратегии познания жизни требуется громадный объем дополнительной информации. Науки нового века - геномика, протеомика и биоинформатика уже начали поставлять для нее исходный материал.

Геномикабиологическая дисциплина, изучающая структуру и механизм функционирования генома в живых системах. Геном - совокупность всех генов и межгенных участков любого организма. Структурная геномика изучает строение генов и межгенных участков, играющих большое значение в регуляции активности генов. Функциональная геномика изучает функции генов, функции их белковых продуктов. Предметом изучения сравнительной геномики являются геномы разных организмов, сравнение которых позволит понять механизмы эволюции организмов, неизвестные функции генов. Геномика возникла в начале 90-х годов XX века вместе с проектом "Геном человека". Задача этого проекта состояла в том, чтобы определить последовательность всех нуклеотидов в геноме человека с точностью до 0,01%. К концу 1999 года полностью раскрыто строение генома многих десятков видов бактерий, дрожжей, круглого червя, дрозофилы, растения арабидопсиса. В 2003 году расшифрован геном человека. Геном человека содержит около 30 тысяч белок-кодирующих генов. Только для 42% из них известна их молекулярная функция. Оказалось, что с дефектами генов и хромосом связано лишь 2% всех наследственных заболеваний; 98% заболеваний связаны с нарушением регуляции нормального гена. Гены проявляют свою активность в синтезируемых белках, выполняющих в клетке и организме различные функции.

В каждой конкретной клетке в определенный момент времени функционирует определенный набор белков - протеом. Протеомика - наука, изучающая совокупность белков в клетках при разных физиологических состояниях и в разные периоды развития, а так же функции этих белков. Между геномикой и протеомикой есть существенная разница - геном стабилен для данного вида, тогда как протеом индивидуален не только для разных клеток одного организма, но и для одной клетки в зависимости от ее состояния (деление, покой, дифференцировка т.д.). Множество протеомов, свойственное многоклеточным организмам, создает огромную трудность их изучения. Пока даже неизвестно точное число белков в человеческом организме. По некоторым оценкам их сотни тысяч; лишь несколько тысяч белков уже выделены, еще меньшая их часть подробно изучена. Идентификация и описание белков - это чрезвычайно сложный технически процесс, требующий комбинации биологических и компьютерных методов анализа. Однако разрабатываемые в последние годы методы выявления продуктов активности генов - молекул и РНК и белков - позволяют надеяться на быстрый прогресс в этой области. Уже сейчас созданы методы, позволяющие одновременно выявлять сотни клеточных белков одновременно и сравнивать белковые наборы в разных клетках и тканях в норме и при разных патологиях. Одним из таких методов является использование биологических чипов, позволяющих обнаруживать в изучаемом объекте сразу тысячи разных веществ: нуклеиновых кислот и белков. Открываются большие возможности для практической медицины: имея протеомную карту, подробный атлас всего комплекса белков, врачи наконец получат долгожданную возможность лечить само заболевание, а не симптомы.

Геномика и протеомика оперирует с такими огромными массивами информации, что возникла острая потребность в биоинформатике - науке, которая собирает, сортирует, описывает, анализирует и перерабатывает новую информацию о генах и белках. Используя математические методы и вычислительную технику, ученые строят генные сети, моделируют биохимические и иные клеточные процессы. Через 10-15 лет геномика и протеомика достигнут такого уровня, что станет возможным изучать метаболом - комплексную схему взаимодействий всех белков в живой клетке. Эксперименты на клетках и организме будут заменены на опыты с компьютерными моделями. Появится возможность создания и применения индивидуальных лекарственных средств, разработки индивидуальных профилактических мероприятий. Особенно сильное влияние новые знания окажут на биологию развития. Станет возможным получать целостное и вместе с тем достаточно детализированное представление об индивидуальных клетках, начиная от яйцеклетки и сперматозоида и вплоть до дифференцированных клеток. Это позволит впервые на количественной основе следить за взаимодействием индивидуальных клеток на разных стадиях эмбриогенеза, что всегда было заветной мечтой ученых, изучающих биологию развития. Открываются новые горизонты в решении таких проблем как канцерогенез и старение. Достижения геномики, протеомики и биоинформатики окажут решающее влияние на теорию эволюции и систематику организмов.

3 . Белковая инженерия

синтез белок ген пространственный

Физические и химические свойства природных белков часто не удовлетворяют условиям, в которых эти белки будут использоваться человеком. Требуется изменение его первичной структуры, которое обеспечит формирование белка с иной, чем прежде, пространственной структурой и новыми физико-химическими свойствами, позволяющими и в иных условиях выполнять присущие природному белку функции. Конструированием белков занимается белковая инженерия. Для получения измененного белка используют методы комбинаторной химии и осуществляют направленный мутагенез - внесение специфических изменений в кодирующие последовательности ДНК, приводящие к определенным изменениям в аминокислотных последовательностях. Для эффективного конструирования белка с заданными свойствами необходимо знать закономерности формирования пространственной структуры белка, от которой зависят его физико-химические свойства и функции, то есть необходимо знать как первичная структура белка, каждый его аминокислотный остаток влияет на свойства и функции белка. К сожалению, для большинства белков неизвестна третичная структура, не всегда бывает известно, какую именно аминокислоту или последовательность аминокислот нужно изменить, чтобы получить белок с нужными свойствами. Уже сейчас ученые с помощью компьютерного анализа могут предсказывать свойства многих белков, исходя из последовательности их аминокислотных остатков. Подобный анализ значительно упростит процедуру создания нужных белков. Пока же для того, чтобы получить измененный белок с нужными свойствами, идут в основном иным путем: получают несколько мутантных генов и находят тот белковый продукт одного из них, который обладает нужными свойствами.

Для направленного мутагенеза используют разные экспериментальные подходы. Получив измененный ген, его встраивают в генетическую конструкцию и вводят ее в прокариотические или эукариотические клетки, осуществляющие синтез белка, кодируемого этой генетической конструкцией.

Потенциальные возможности белковой инженериизаключаются в следующем.

Изменив прочность связывания преобразуемого вещества - субстрата - с ферментом, можно повысить общую каталитическую эффективность ферментативной реакции.

Повысив стабильность белка в широком диапазоне температур и кислотности среды, можно использовать его в условиях, при которых исходный белок денатурирует и теряет свою активность.

Создав белки, способные функционировать в безводных растворителях, можно осуществлять каталитические реакции в нефизиологических условиях.

4.Изменив каталитический центр фермента, можно повысить его специфичность и уменьшить число нежелательных побочных реакций

5.Повысив устойчивость белка к расщепляющим его ферментам, можно упростить процедуру его очистки.

б.Изменив белок таким образом, чтобы он мог функционировать без обычного для него не аминокислотного компонента (витамина, атома металла и т.п.), можно использовать его в некоторых непрерывных технологических процессах.

7.Изменив структуру регуляторных участков фермента, можно уменьшить степень его торможения продуктом ферментативной реакции по типу отрицательной обратной связи и тем самым увеличить выход продукта.

8.Можно создать гибридный белок, обладающий функциями двух и более белков. 9.Можно создать гибридный белок, один из участков которого облегчает выход гибридного белка из культивируемой клетки или извлечение его из смеси.

Познакомимся с некоторыми достижениями генной инженерии белков.

1.Заменив несколько аминокислотных остатков лизоцима бактериофага Т4 на цистеин получен фермент с большим числом дисульфидных связей, благодаря чему этот фермент сохранил свою активность при более высокой температуре.

2.Замена остатка цистеина на остаток серина в молекуле р-интерферона человека, синтезируемого кишечной палочкой, предотвращала образование межмолекулярных комплексов, при котором примерно в 10 раз уменьшалась противовирусная активность этого лекарственного средства.

3.Замена остатка треонина на остаток пролина в молекуле фермента тирозил-тРНК-синтетазы повысило каталитическую активность этого фермента в десятки раз: он стал быстрее присоединять тирозин к тРНК, переносящей эту аминокислоту в рибосому в ходе трансляции.

4.Субтилизины - богатые серином ферменты, расщепляющие белки. Они секретируются многими бактериями и широко используются человеком для биодеградации. Они прочно связывают атомы кальция, повышающие их стабильность. Однако в промышленных процессах присутствуют химические соединения, которые связывают кальций, после чего субтилизины теряют свою активность. Изменив ген, ученые удалили из фермента аминокислоты, участвующие в связывании кальция, и заменили одну аминокислоту на другую с целью повышения стабильности субтилизина. Измененный фермент оказался стабильным и функционально активным в условиях, близких к промышленным.

5.Была показана возможность создания фермента, функционирующего по типу рестриктаз, расщепляющих ДНК в строго определенных местах. Ученые создали гибридный белок, один фрагмент которого узнавал определенную последовательность нуклеотидных остатков в молекуле ДНК, а другой расщеплял ДНК в этом участке.

6.Активатор тканевого плазминогена - фермент, который используют в клинике для растворения сгустков крови. К сожалению, он быстро выводится из системы кровообращения и его приходится вводить повторно или в больших дозах, что приводит к побочным эффектам. Внеся три направленные мутации в ген этого фермента, получили долгоживущий фермент, обладающий повышенным сродством к разрушаемому фибрину и с такой же фибринолитической активностью, как у исходного фермента.

7.Произведя замену одной аминокислоты в молекуле инсулина, ученые добились того, что при подкожном введении этого гормона больным, страдающим диабетом, изменение концентрации этого гормона в крови было близко к физиологическому, возникающему после приема пищи.

8.Существует три класса интерферонов, обладающих противовирусной и противораковой активностью, но проявляющих разную специфичность. Заманчиво было создать гибридный интерферон, обладающий свойствами интерферонов трех типов. Были созданы гибридные гены, включающие в себя фрагменты природных генов интерферонов нескольких типов. Часть этих генов, будучи встроенными в бактериальные клетки, обеспечивали синтез гибридных интерферонов с большей, чем у родительских молекул, противораковой активностью.

9.Природный гормон роста человека связывается не только с рецептором этого гормона, но и с рецептором другого гормона - пролактина. Для того, чтобы избежать нежелательных побочных эффектов в процессе лечения, ученые решили устранить возможность присоединения гормона роста к пролактиновому рецептору. Они добились этого, заменив некоторые аминокислоты в первичной структуре гормона роста с помощью генетической инженерии.

10. Разрабатывая средства против ВИЧ-инфекции, ученые получили гибридный белок, один фрагмент которого обеспечивал специфическое связывание этого белка только с пораженными вирусом лимфоцитами, другой фрагмент осуществлял проникновение гибридного белка внутрь пораженной клетки, а еще один фрагмент нарушал синтез белка в пораженной клетке, что приводило к ее гибели.

Таким образом, мы убедились в том, что, изменяя специфические участки белковой молекулы, можно придавать новые свойства уже существующим белкам и создавать уникальные ферменты.

Белки являются основной мишенью для лекарственных средств. Сейчас известно около 500 мишеней для действия лекарств. В ближайшие годы их число возрастет до 10 000, что позволит создать новые, более эффективные и безопасные лекарства. В последнее время разрабатываются принципиально новые подходы поиска лекарственных средств: в качестве мишеней рассматриваются не одиночные белки, а их комплексы, белок -белковые взаимодействия и фолдинг белков.

Размещено на сайт

Подобные документы

    Типы взаимодействия неаллельных генов. Теория Ф. Жакоба и Ж. Моно о регуляции синтеза и-РНК и белков. Дигибридное скрещивание при неполном доминировании. Неаллельные взаимодействия генов. Механизм регуляции генетического кода, механизм индукции-репрессии.

    реферат , добавлен 29.01.2011

    Дифференциальная экспрессия генов и ее значение в жизнедеятельности организмов. Особенности регуляции активности генов у эукариот и их характеристики. Индуцибельные и репрессибельные опероны. Уровни и механизмы регуляции экспрессии генов у прокариот.

    лекция , добавлен 31.10.2016

    Механизмы функционирования живых систем. Разработка новых биотехнологических ферментов. Решение парадокса Левинталя. Сложности моделирования белков. Методы моделирования пространственной структуры белка. Ограничения сопоставительного моделирования.

    реферат , добавлен 28.03.2012

    Положения биологической гипотезы Жакоба-Мано. Роль генов-регуляторов в синтезе белков. Особенности протекания первого этапа этого процесса – транскрипции. Трансляция как следующая ступень их биосинтеза. Основы ферментативной регуляции этих процессов.

    презентация , добавлен 01.11.2015

    Физические, биологические и химические свойства белков. Синтез и анализ белков. Определение первичной, вторичной, третичной и четвертичной структуры белков. Денатурация, выделение и очистка белков. Использование белков в промышленности и медицине.

    реферат , добавлен 10.06.2015

    Понятие, стратегия, история развития и достижения белковой инженерии. Потенциальные возможности её использования. Механизм осуществления сайт-специфического мутагенеза. Получение модифицированных вариантов природных белков. Библиотеки пептидов и эпитопов.

    курсовая работа , добавлен 19.12.2015

    Физические методы исследования строения белков. Зависимость биологической активности белков от их первичной структуры. Уравнение реакции переаминирования гистидина и глиоксиловой кислоты. Биологически активные производные гормона адреналина, их биосинтез.

    контрольная работа , добавлен 10.07.2011

    Изучение кодирования аминокислотной последовательности белков и описание процесса синтеза белка в рибосомах. Генетический код и синтез рибонуклеиновой кислоты. Построение цепи матричной РНК и синтез протеина. Трансляция, сворачивание и транспорт белков.

    реферат , добавлен 11.07.2015

    Роль белков в сигнальных системах клеток, при иммунном ответе и в клеточном цикле. Виды белков в живых клетках: ферменты, транспортные, пищевые, запасные, сократительные, двигательные, структурные, защитные и регуляторные. Доменная структура белков.

    презентация , добавлен 18.10.2014

    Понятие белков как высокомолекулярных природных соединений (биополимеров), состоящих из остатков аминокислот, которые соединены пептидной связью. Функции и значение белков в организме человека, их превращение и структура: первичная, вторичная, третичная.

СТАТИЧЕСКАЯ БИОХИМИЯ

Глава IV .2.

Белки

Белки – неразветвляющиеся полимеры, минимальная структурная единица которых – аминокислота (АК). Аминокислоты соединены между собой пептидной связью. В природе встречается гораздо больше АК, чем входит в состав животных и растительный белков. Так, множество «небелковых» АК содержится в пептидных антибиотиках или являются промежуточными продуктами обмена белков. В состав белков входит 20 АК в альфа-форме, расположенных в различной, но строго определенной для каждого белка последовательности.

Классификация АК

По химическому строению

1) Алифатические – глицин (Гли), аланин (Ала), валин (Вал), лейцин (Лей), изолейцин (Илей);

2) Оксикислоты – серин (Сер), треанин (Тре);

3) Дикарбоновые – аспарагин (Асп), глутамин (Глу), аспарагиновая кислота (Аск), глутаминовая кислота (Глк);

4) Двуосновные – лизин (Лиз), гистидин (Гис), аргинин (Арг);

5) Ароматические – фениналанин (Фен), тирозин (Тир), триптофан (Три);

6) Серосодержащие – цистеин (Цис), метионин (Мет).

По биохимической роли:

1) глюкогенные – через ряд химических превращений поступают на путь гликолиза (окисления глюкозы) – Гли, Ала, Тре, Вал, Аск, Глк, Арг, Гис, Мет.

2) кетогенные – участвуют в образовании кетоновых тел - Лей, Илей, Тир, Фен.

По заменимости:

1) Незаменимые – не синтезируются в организме – Гис, Иле, Лей, Лиз, Мет, Фен, Тре, Три, Вал, а у молодняка Арг, Гис.

2) Заменимые – остальные.

За счет наличияв молекуле АК одновременно аминной и карбоксильной групп этим соединениям присущи кислотно-основные свойства. В нейтральной среде АК существуют в виде биполярных ионов- цвиттер-ионов т.е.

не NH 2 – R – COOH , аNH 3 + – R - COO –

Образование пептидной связи . Если карбоксильная группа одной АК ацилирует аминогруппу другой АК, от образуется амидная связь, которую называют пептидной. Т. о. пептиды – это соединения, образованные из остатков альфа-АК, соединенных между собой пептидной связью .

Данная связь достаточно стабильна и разрыв ее происходит лишь при участии катализаторов – специфических ферментов. Посредством такой связи АК объединяются в достаточно длинные цепочки, которые носят название полипептидных. Каждая такая цепь содержит на одном конце АК со свободной аминогруппой – это N -концевой остаток, и на другом с карбоксильной группой – С-концевой остаток.

Полипептиды, способные самопроизвольно формировать и удерживать определенную пространственную структуру, которая называется конформацией, относят к белкам. Стабилизация такой структуры возможна лишь при достижении полипептидами определенной длины, поэтому белками обычно считают полипептиды молекулярной массой более 5 000 Да. (1Да равен 1/12 изотопа углерода). Только имея определенное пространственное строение, белок может функционировать.

Функции белков

1) Структурная (пластическая) – белками образованы многие клеточные компоненты, а в комплексе с липидами они входят в состав клеточных мембран.

2) Каталитическая – все биологические катализаторы – ферменты по своей химической природе являются белками.

3) Транспортная – белок гемоглобин транспортирует кислород, ряд других белков образуя комплекс с липидами транспортируют их по крови и лимфе (пример: миоглобин, сывороточный альбумин).

4) Механохимическая – мышечная работа и иные формы движения в организме осуществляются при непосредственном участии сократительных белков с использованием энергии макроэргических связей (пример: актин, миозин).

5) Регуляторная – ряд гормонов и других биологически активных веществ имеют белковую природу (пр.: инсулин, АКТГ).

6) Защитная – антитела (иммуноглобулины) являются белками, кроме тогооснову кожи составляет белок коллаген, а волос – креатин. Кожа и волосы защищают внутреннюю среду организма от внешних воздействий. В состав слизи и синовиальной жидкости входят мукопротеиды.

7) Опорная – сухожилия, поверхности суставов соединения костей образованы в значительной степени белковыми веществами (пр.: коллаген, эластин).

8) Энергетическая – аминокислоты белков могут поступать на путь гликолиза, который обеспечивает клетку энергией.

9) Рецепторная – многие белки участвуют в процессах избирательного узнавания (рецепторы).

Уровни организации белковой молекулы.

В современной литературе принято рассматривать4 уровня организации структуры молекулы белка.

Последовательность аминокислотных остатков, соединенных между собой пептидной связью называют первичным уровнем организации белковой молекулы. Она кодируется структурным геном каждого белка. Связи: пептидная и дисульфидные мостики между относительно близко расположенными остатками цистеинов. Это ковалентные взаимодействия, которые разрушаются только под действием протеолитических ферментов (пепсин, трипсин и т.д.).

Вторичной структурой называют пространственное расположение атомов главной цепи молекулы белка . Существует три типа вторичной структуры: альфа-спираль, бета-складчатость и бета-изгиб. Образуется и удерживается в пространстве за счет образования водородных связей между боковыми группировками АК основной цепи. Водородные связи образуются между электроотрицательными атомами кислорода карбонильных групп и атомами водорода двух аминокислот.

Альфа-спираль – это пептидная цепь штопорообразно закрученная вокруг воображаемого цилиндра. Диаметр такой спирали 0,5 А. В природных белках обнаружена только правая спираль. Некоторые белки (инсулин) имеют две параллельные спирали. Бета-складчатость – полипептидная цепь собрана в равнозначные складки. Бета-изгиб – образуется между тремя аминокислотами за счет водородной связи. Он необходим для изменения пространственного расположения полипептидной цепи при образовании третичной структуры белка.

Третичная структура – это свойственный данному белку способ укладки полипептидой цепи в пространстве . Это основа функциональности белка. Она обеспечивает стабильность обширных участков белка, состоящих из множества аминокислотных остатков и боковых групп. Такие упорядоченные в пространстве участки белка формируют активные центры ферментов или зоны связывания и повреждение третичной структуры приводит к утрате функциональной активности белка.

Стабильность третичной структуры зависит в основном от нековалентных взаимодействий внутри белковой глобулы – преимущественно водородных связей и ван-дер-ваальсовых сил. Но некоторые белки дополнительно стабилизируются за счет таких ковалентных взаимодействий как дисульфидные мостики межу остатками цистеина.

Большинство белковых молекул имеют участки как альфа-спирали так и бета-складчатости. Но чаще по форме третичной структуры разделяют глобулярные белки – построенные преимуществено из альфа-спиралей и имеющеие форму шара или элипса (большинство ферментов). И фибрилярные – состоящие пеимущественно из бета-складчатости и имеющие сплющенную или нитевидную формы (пепсин, белки соединительной такни и хряща).

Размещение в пространстве взаимодействующих между собой субъединиц, образованных отдельными полипептидными цепями, называется четвертичной структурой . Т.е. в формировании четвертичной структуры участвуют не пептидные цепи сами по себе, а глобулы, образованные каждой из этих цепей в отдельности. Четвертичная структура – это высший уровень организации белковой молекулы и он присущ далеко не всем белкам. Связи, формирующие эту структуру нековалентные: водородные, электростатического взаимодействия.

Фундаментальный принцип молекулярной биологии: последовательность аминокислотных остатков полипептидной цепи белка несет в себе всю информацию, которая необходима для формирования определенной пространственной структуры. Т.е. имеющаяся в данном белке аминокислотная последовательность предопределяет образование альфа- или бета-конформации вторичной структуры за счет образования между этими АК водородных или дисульфидных связей и в дальнейшем формирование глобулярной или фибрилярной структуры также за счет нековалентных взаиомдействий между боковыми учатками определенных аминокислот.

Физико-химические свойства

Растворы белка относятся к растворам ВМС и обладают рядом свойств гидрофильных коллоидов: медленной диффузией, высокой вязкостью, опаслеценцией, дают конус Тиндаля.

1) Амфотерность связана с наличием в молекуле белка катионообразующих групп – аминогрупп и анионообразующих – карбоксильных группу. Знак заряда молекулы зависит от количества свободных групп. Если преоблазают карбоксильные группы то заряд молекулы отрицательный (проявляются свойства слабой кислоты), если аминогруппы – то положительный (основные свойства).

Заряд белка также зависит от рН среды. В кислой среде молекула приобретаетположительный заряд, в щелочной – отрицательный.

[ NH 3 + - R – COO - ] 0

pH > 7 [ OH - ]7 >pH [ H + ]

[ NH 2 - R – COO - ] - [ NH 3 + - R – COOH] +

Значение рН при котором число разноименных зарядов в белковой молекуле одинаково, т. е. суммарный заряд равен нулю называется изоэлектрической точкой данного белка. Устойчивость белковой молекулы к воздействию физических и химических факторов в изоэлектрической точке наименьшая.

Большинство природных белков содержат значительное количество дикарбоновых аминокислот и поэтому относятся к кислым белкам. Их изоэлектрическая точка лежит в слабокислой среде.

2) Растворы белков обладают буферными свойствами за счет их амфотерности.

3) Растворимость . Поскольку молекула белка содержит полярные амино – и карбоксильные группы, то в растворе поверхностные остатки АК гидратируются – происходит образование коацервата .

4) Коацервация - слияние водных оболочек нескольких частиц, без объединения самих частиц.

5) Коагуляция – склеивание белковых частиц и выпадение их в осадок. Это происходит при удаленииих гидратной оболочки. Для этого достаточно изменить структуручастицы белка, так, чтобы ее гидрофильные группы, которые связывают воду растворителя, оказались внутри частицы. Реакции осаждения балка в растворе делятся на две группы: обратимые (высаливание) и необратимые (денатурация).

6) Денатурацией называется существенное изменение вторичной и третичной структуры белка, т. е. Нарушение системы нековалентных взаимодействий, не затрагивающее его ковалентной (первичной) структуры. Денатурированный белок лишен всякой биологической активности в клетке и в основном используется как источник аминокислот. Денатурирующими агентами могут быть химические факторы: кислоты, щелочи, легко гидратирующие соли, органические растворители, различные окислители. К физическим факторам могут быть отнесены: действие высокого давления, многократное замораживание и оттаивание, ультразвуковые волны, УФ-лучи, ионизирующая радиация. Но наиболее распространенным физическим фактором денатурации белка является повышение температуры.

В ряде случаев денатурированный белок в клетке может быть подвергнут ренатурации, т. е. свернут обратно в первоначальную пространственную структуру. Этот процесс происходит при участии специфических белков, так называемых белков теплового шока (heat shock proteins или hsp ) молекулярной массой 70 кДа. Данные белки синтезируются в клетках в большом количествепри воздействии на нее (или весь организм) неблагоприятных факторов, в частности повышенной температуры. Присоединяясь к развернутой полипептидной цепи hsp 70 быстро сворачивают ее в правильную первоначальную структуру.

Классификация белков

По растворимости: водорастворимые, солерстворимые, спирторастворимые, нерастворимые и пр.

По конформационной структуре : фибриллярные, глобулярные.

По химическому строению: протеины – состоят только из аминокислот, протеиды – помимо АК имеют в составе небелковую часть (углеводы, липиды, металлы, нуклеиновые кислоты)

Протеины :

1) Альбумины – растворимы в воде, не растворимы в конц. растворах солей. р I = 4.6-4.7. Существуют альбумины молока, яиц, сыворотки крови.

2) Глобулины – не растворимы в воде, растворимы в солевых растворах. Имунноглобулины .

3) Гистоны – растворимы в воде, в слабоконцентрированных кислотах. Обладают выраженными основными свойствами. Это ядерные белки, они связаны с ДНК и РНК.

4) Склеропротеины – белки опорных тканей (хрящей, костей), шерсти, волос. Не растворимы в воде, слабых кислотах и щелочах.

а) коллагены – фибрилярные белки соединительной ткани. При длительном кипячении они растворяются в воде и при застудневании образуется желатин.

б) эластины– белки связок и сухожилий. По свойствам похожи на коллагены, но подвергаются гидролизу под действием ферментов пищеварительного сока;

в) кератин – входит в состав волос, перьев, копыт;

г) фиброин – белок шелка, в совем составе содержит много серина;

д) проламины и глютенины – белки растительного происхождения.

Протеиды

Помимо АК содержат простетическую группу и в зависимости от ее химической природы они классифицируются на:

1) Нуклеопротеиды – простетическая група – нуклеиновые кислоты. Среди многочисленных классов нуклеопротеидов наиболее изученными являются рибосомы, состоящие из нескольких молекул РНК и рибосомных белков, и хроматин – основной нуклеопротеид эукариотических клеток, состоящий из ДНК и структурообразующих белков – гистонов (содержатся в клеточном ядре и митохондриях) (подробнее см. главы "Нуклеиновые кислоты" и "Матричный биосинтез").

2) Гемопротеиды - небелковый компонент этих протеидов – гем, построен из четырех пиррольных колец, с ними связан ион двухвалентного железа (через атомы азота). К таким белка относятся: гемоглобин, миоглобин, цитохромы. Этот класс белков еще называют хромопротеиды, поскольку гем является окрашенным соединением. Гемоглобин – транспорт кислорода. Миоглобин – запасание кислорода в мышцах. Цитохромы (ферменты) – катализ окислительно-восстановаительных реакций и электронный транспорт в дыхательной цепи.

(Подробнее см. приложение 1).

3) Металлопротеиды – в состав простетической группы входят металлы. Хлорофилл – содержит гем, но вместо железа – магний. Цитохром а – содержит медь, сукцинатдегидрогеназа и др. ферменты содержат негеминовое железо (ферродоксин ).

4) Липопротеиды – содержат липиды, входят в состав клеточных мембран

5) Фосфопротеиды – содержат остаток фосфорной кислоты

6) Глюкопротеиды – содержат сахара

ЛИТЕРАТУРА К ГЛАВЕ IV .2.

1. Балезин С. А. Практикум по физической и коллоидной химии // М:. Просвещение, 1972, 278 с.;

2. Бышевский А. Ш., Терсенов О. А. Биохимия для врача // Екатеринбург: Уральский рабочий, 1994, 384 с.;

3. Кнорре Д. Г., Мызина С. Д. Биологическая химия. – М.: Высш. шк. 1998, 479 с.;

4. Молекулярная биология. Структура и функции белков /Под ред. А. С. Спирина // М.: Высш. шк., 1996, 335 с.;

6. Равич – Щербо М. И., Новиков В. В. Физическая и коллоидная химия // М:. Высш. шк., 1975,255 с.;

7. Филиппович Ю. Б., Егорова Т. А., Севастьянова Г. А. Практикум по общей биохимии // М.: Просвящение, 1982, 311с.;

Повсюду, где мы встречаем жизнь,
мы находим, что она связана
с каким-либо белковым телом.

Ф.Энгельс

Цели . Расширить знания о белках как природных полимерах, о многообразии их функций во взаимосвязи со строением и свойствами; использовать опыты с белками для реализации межпредметных связей и для развития интереса учащихся.

План изучения

  • Роль белков в организме.
  • Состав, строение, свойства белков.
  • Функции белков.
  • Синтез белков.
  • Превращения белков в организме.

ХОД УРОКА

Роль белков в организме

Учитель биологии. Из органических веществ, входящих в живую клетку, важнейшую роль играют белки. На их долю приходится около 50% массы клетки. Благодаря белкам организм приобрел возможность двигаться, размножаться, расти, усваивать пищу, реагировать на внешние воздействия и т. д.
«Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка», – писал Энгельс в своих трудах.

Состав, строение, свойства белков

Учитель химии . Белки – это сложные высокомолекулярные природные соединения, построенные из -аминокислот. В состав белков входит 20 различных аминокислот, отсюда следует огромное многообразие белков при различных комбинациях аминокислот. Как из 33 букв алфавита мы можем составить бесконечное число слов, так из 20 аминокислот – бесконечное множество белков. В организме человека насчитывается до 100 000 белков.
Белки подразделяют на протеины (простые белки) и протеиды (сложные белки).
Число аминокислотных остатков, входящих в молекулы, различно: инсулин – 51, миоглобин – 140. Отсюда M r белка от 10 000 до нескольких миллионов.
Историческая справка . Первая гипотеза о строении молекулы белка была предложена в 70-х годах XIX в. Это была уреидная теория строения белка. В 1903 г. немецкий ученый Э.Г.Фишер предложил пептидную теорию, которая стала ключом к тайне строения белка. Фишер предположил, что белки представляют собой полимеры из остатков аминокислот, соединенных пептидной связью NH–CO. Идея о том, что белки – это полимерные образования, высказывалась еще в 1888 г. русским ученым А.Я.Данилевским. Эта теория получила подтверждение в последующих работах. Согласно полипептидной теории белки имеют определенную структуру.
(Демонстрация кинофрагмента «Первичная, вторичная, третичная структура белка».)
Многие белки состоят из нескольких полипептидных частиц, которые складываются в единый агрегат. Так, молекула гемоглобина (С 738 Н 1166 S 2 Fe 4 O 208) состоит из четырех субъединиц. Отметим, что M r белка яйца = 36 000, M r белка мышц = 1 500 000.

Первичная структура белка – последовательность чередования аминокислотных остатков (все связи ковалентные, прочные) (рис. 1).

Вторичная структура – форма полипептидной цепи в пространстве. Белковая цепь закручена в спираль (за счет множества водородных связей) (рис. 2).

Третичная структура – реальная трехмерная конфигурация, которую принимает в пространстве закрученная спираль (за счет гидрофобных связей), у некоторых белков – S–S-связи (бисульфидные связи) (рис. 3).

Четвертичная структура – соединенные друг с другом макромолекулы белков образуют комплекс (рис. 4).

Химические свойства белков

При нагревании белков и пептидов с растворами кислот, щелочей или при действии ферментов протекает гидролиз. Гидролиз белков сводится к расщеплению полипептидных связей:

Лабораторный опыт 1.
Денатурация белков

Денатурация – нарушение природной структуры белка под действием нагревания и химических реагентов.
а) Действие спирта на белок;
б) действие солей хлорида натрия (концентрированный раствор) и ацетата свинца на белок;
в) действие HNO 3 (конц.);
г) свертывание белков при кипячении.

Лабораторный опыт 2.
Цветные качественные реакции белков

а) Биуретовая реакция;
б) ксантопротеиновая реакция;
в) взаимодействие белка с ацетатом свинца при нагревании.

Учительхимии . Данные опыта 1 показывают, что загрязнение природной среды солями тяжелых металлов приводит к отрицательным последствиям для живых организмов. Природные белки теряют присущие им специфические свойства, становятся нерастворимыми, денатурируют. При отравлении людей солями тяжелых металлов используют молоко, белки которого связывают ионы таких металлов.
(Демонстрация фрагмента из 1-й части фильма «Белки, строение белковых молекул».)

Функции белков

Учитель биологии . Функции белков разнообразны.

1. Строительный материал – белки участвуют в образовании оболочки клетки, органоидов и мембран клетки. Из белков построены кровеносные сосуды, сухожилия, волосы.
2. Каталитическая роль – все клеточные катализаторы – белки (активные центры фермента). Структура активного центра фермента и структура субстрата точно соответствуют друг другу, как ключ и замок.
3. Двигательная функция – сократительные белки вызывают всякое движение.
4. Транспортная функция – белок крови гемоглобин присоединяет кислород и разносит его по всем тканям.
5. Защитная роль – выработка белковых тел и антител для обезвреживания чужеродных веществ.
6. Энергетическая функция – 1 г белка эквивалентен 17,6 кДж.

Синтез белков

Учитель биологии. Человек в течение длительного времени потреблял белки, выделенные главным образом из растений и животных. В последние десятилетия ведутся работы по искусственному получению белковых веществ. Половина земного шара находится в состоянии белкового голодания, а мировая нехватка пищевого белка составляет около 15 млн т в год при норме потребления белка в сутки взрослым человеком 115 г.
(Демонстрация фрагмента 2-й части кинофильма «Белки, строение белковых молекул» – о сборке молекулы белка.)

Превращения белков в организме

Учительхимии . Выводы. Все белки являются полипептидами, но не всякий полипептид является белком. Каждый белок имеет свое специфическое строение.

Домашнее задание . Рудзитис Г.Е., Фельдман Ф.Г . Химия-11. М.: Просвещение, 1992, с. 18–22.

ЛИТЕРАТУРА

Макареня А.А. Повторим химию. М.: Высшая школа, 1989;
Пособие по химии. Органическая химия для подготовки в учебные заведения медико-биологического профиля. Ростов-на-Дону: Изд-во Ростовского ун-та, 1995;
Колтун М. Мир химии. М.: Детская литература, 1988;
Книга для чтения по органической химии. Сост. П.Ф.Буцкус. М.: Просвещение, 1985;
Чертков И.Н. Эксперимент по полимерам в средней школе. М.: Просвещение, 1971;
Кузовая Т.В., Калякина Е.А. Белки. «Химия» (Издательский дом «Первое сентября»), 2003, № 3,
с. 14;
Беляев Д.К., Воронцов Н.Н., Дымишц Г.М. и др. Общая биология. М.: Просвещение, 1999, 287 с.

Формирование новых знаний. Лекционный блок.

План изучения темы:

1.Роль белков в организме, природные источники белков.

2.Состав и строение белков.

3.Функции белков.

4.Физические и химические свойства белков.

5.Синтез белков.

6.Превращения белков в организме

Из органических веществ, входящих в живую клетку, важнейшую роль играют белки. На их долю приходится около 50% массы клетки. Благодаря белкам организм приобрел возможность двигаться, размножаться, расти, усваивать пищу, реагировать на внешние воздействия и т. д.

«Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка», – писал Энгельс в своих трудах.

Белки – необходимые компоненты пищевых продуктов, они входят в состав лекарственных препаратов.

Белок – важный компонент пищи человека. Основные источники пищевого белка: мясо, молоко, продукты переработки зерна, хлеб, рыба, овощи. Потребность в белке зависит от возраста, пола, вида деятельности. В организме здорового человека должен быть баланс между количеством поступающих белков и выделяющимися продуктами распада. Для оценки белкового обмена введено понятие белкового баланса. В зрелом возрасте у здорового человека существует азотное равновесие, т.е. количество азота, полученного с белками пищи равно количеству выделяемого азота. В молодом, растущем организме идет накопление белковой массы, поэтому азотный баланс будет положительный, т.е. количество поступающего азота превышает количество выводимого из организма. У людей пожилого возраста, а также при некоторых заболеваниях наблюдается отрицательный азотный баланс. Длительный отрицательный азотный баланс ведет к гибели организма.

Необходимо помнить, что некоторые аминокислоты при тепловой обработке, длительном хранении продуктов могут образовывать неусвояемые организмом соединения, т.е. становиться “недоступными”. Это снижает ценность белка.

Животные и растительные белки усваиваются организмом неодинаково. Если белки молока, молочных продуктов, яиц усваиваются на 96%, мяса и рыбы – на 93–95%, то белки хлеба – на 62–86%, овощей – на 80%, картофеля и некоторых бобовых – на 70%. Однако смесь этих продуктов может быть биологически более полноценной.

На степень усвоения организмом белков оказывает влияние технология получения пищевых продуктов и их кулинарная обработка. При умеренном нагревании пищевых продуктов, особенно растительного происхождения, усвояемость белков несколько возрастает. При интенсивной тепловой обработке усвояемость снижается.


Суточная потребность взрослого человека в белке разного вида 1–1,5 г на 1 кг массы тела, т.е. приблизительно 85–100 г. Доля животных белков должна составлять приблизительно 55% от общего его количества в рационе.

2. Строение белков .

Многие органические соединения, входящие в состав клетки, характеризуются большими размерами молекул. Как называются такие молекулы? (макромолекулы) Они состоят обычно из повторяющихся сходных по строению низкомолекулярных соединений, связанных между собой ковалентными связями. Их строение можно сравнить с бусинками на нити. Как называются эти составные элементы? (Мономеры). Они образуют полимеры. Большинство полимеров построено из одинаковых мономеров. Такие мономеры называются регулярными. Например, если А – мономер, то –А-А-А-…….А- полимер. Полимеры, в которых мономеры различны по строению, называются нерегулярными. Например, -А-В-Р-П-А-……Г-Р-П-А-. Состав определяет их свойства.

Белки – нерегулярные полимеры, мономерами которых являются аминокислоты.

Белки – это сложные высокомолекулярные природные соединения, построенные из -аминокислот. В состав белков входит 20 различных аминокислот, отсюда следует огромное многообразие белков при различных комбинациях аминокислот. Как из 33 букв алфавита мы можем составить бесконечное число слов, так из 20 аминокислот – бесконечное множество белков. В организме человека насчитывается до 100000 белков.

В состав большинства белков входят 300–500 аминокислотных остатков, но есть и более крупные белки, состоящие из 1500 и более аминокислот. Белки различаются и составом аминокислот и числом аминокислотных звеньев, и особенно порядком чередования их в полипептидных цепях. Расчет показывает, что для белка, построенного из 20 различных аминокислот, содержащего в цепи 100 аминокислотных остатков, число возможных вариантов может составить 10130. Многие белки велики и по длине, и по молекулярной массе.

Инсулин –5700

Рибонуклеаза –12700

Альбумин-36000

Гемоглобин-65000

Белки должны быть при такой массе длинными нитями. Но их макромолекулы имеют формулу компактных шаров (глобул) или вытянутых структур (фибрилл).

Белки подразделяют на протеины (простые белки) и протеиды (сложные белки). Число аминокислотных остатков, входящих в молекулы, различно, например: инсулин – 51, миоглобин – 140. Отсюда Mr белка от 10 000 до нескольких миллионов.

Первая гипотеза о строении молекулы белка была предложена в 70-х годах XIX в. Это была уреидная теория строения белка. В 1903 г. Немецкий ученый Э.Г.Фишер предложил пептидную теорию, которая стала ключом к тайне строения белка. Фишер предположил, что белки представляют собой полимеры из остатков аминокислот, соединенных пептидной связью NH–CO. Идея о том, что белки – это полимерные образования, высказывалась еще в 1888 г. Русским ученым А.Я.Данилевским. Эта теория получила подтверждение в последующих работах. Согласно полипептидной теории белки имеют определенную структуру

Многие белки состоят из нескольких полипептидных частиц, которые складываются в единый агрегат. Так, молекула гемоглобина (С738Н1166S2Fe4O208) состоит из четырех субъединиц. Отметим, что Mr белка яйца = 36 000, Mr белка мышц = 1 500 000.

Первичная структура белка – последовательность чередования аминокислотных остатков, осуществляется за счет пептидных (амидных) связей, все связи ковалентные, прочные.

Вторичная структура – форма полипептидной цепи в пространстве. Белковая цепь закручена в спираль, осуществляется за счет множества водородных связей.

Третичная структура – реальная трехмерная конфигурация, которую принимает в пространстве закрученная спираль Третичная структура – клубок из полипептидной спирали. (Демонстрация клубка из эластичного шнура).

Представить конфигурацию легко, труднее понять, какие силы ее поддерживают. (Водородные связи, дисульфидные мостики –S-S-, сложноэфирная связь между радикалами. Полярные группы COOH и OH взаимодействуют с водой, а неполярные радикалы отталкивают ее, они направлены внутрь глобул. Радикалы взаимодействуют между собой благодаря силам Ван-дер-Ваальса.) (за счет гидрофобных связей), у некоторых белков – S–S-связи (бисульфидные мостики), сложноэфирные мостики..

Четвертичная структура – соединенные друг с другом макромолекулы белков образуют комплекс. Четвертичная структура – структура из нескольких полипептидных цепей

Понравилось? Лайкни нас на Facebook