Независимый низкотемпературный тест моторных масел. Вязкость моторного масла – что означает этот показатель? Высокотемпературная вязкость масла

Выбор моторного масла, как и любого другого вида масел, зависит от двух основных параметров – класса вязкости и эксплуатационного класса.

Класс вязкости для моторных масел определяется требованиями стандарта SAE J300 . Для двигателя, равно как и для любого другого механизма, необходимо применять масла с оптимальной вязкостью, величина которой зависит от конструкции, режима работы, возраста и температуры окружающей среды.

Эксплуатационный класс определяет качество моторного масла. Развитие двигателестроения требует от смазочных материалов выполнения новых, все более жестких требований. Для облегчения выбора масла требуемого уровня качества для бензинового или дизельного двигателя и условий их эксплуатаций были созданы различные системы классификации. В каждой системе моторные масла подразделяются на ряды и категории, основанные на назначении и уровне качества.

Наиболее широкое распространение нашли следующие классификации:

API – Американский Институт Нефти (American Petroleum Institute)

ILSAC – Международный комитет стандартизации и апробации моторных масел (International Lubricant Standardization and Approval Committee).

ACEA – Ассоциация Производителей Автомобилей Европы (Association des Cunstructeurs Europeens d’Automobiles)

SAE - классы вязкости моторных масел

В настоящее время единственной признанной в мире системой классификации моторных масел является спецификация SAE J 300 . SAE – Society of AutomotiveEngineers (Общество Автомобильных инженеров). В данной классификации указаны классы (грейды) вязкости.

В таблице указаны два ряда классов вязкости:

Зимние – с буквой W (Winter). Масла, удовлетворяющие этим категориям – маловязкие и применяются зимой – SAE 0W, 5W, 10W, 15W, 20W, 25W

Летние – без буквенного обозначения. Масла, удовлетворяющие этим категориям – высоковязкие и применяются летом – SAE 20, 30, 40, 50, 60.

По спецификации SAE J300, вязкости масел определяются при условиях, близких к реальным. Летнее масло отличается высокой вязкостью, а соответственно, и высокой несущей способностью, что обеспечивает надежное смазывание при рабочих температурах, но оно слишком вязкое при отрицательных температурах, в результате чего у потребителя возникают проблемы с запуском двигателя. Маловязкое зимнее масло облегчает холодный пуск двигателя при отрицательных температурах, но не обеспечивает надежное смазывание летом. Именно поэтому в настоящий момент наибольшее распространение получили всесезонные масла, которые применяются и зимой и летом.

Обозначаются такие масла комбинацией зимнего и летнего ряда:

Всесезонные масла должны удовлетворять одновременно двух критериям:

Не превышать значения низкотемпературных характеристик динамической вязкости (CCS и MRV)

Удовлетворять требованиям по рабочей кинематической вязкости при 100 о С

Класс вязкости

Динамическая вязкость, мПа-с,
не выше, при температуре, °С

Кинематическая вязкость
при 100 °С, мм 2

Вязкость HTHS при 150°С и скорости сдвига 106 с-1, мПа-с, не ниже

проворачиваемость (CСS)

прокачиваемость

не ниже

не выше

6200 при - 35°С

60000 при -40°С

6600 при - 30°С

60000 при -35°С

7000 при - 25°С

60000 при - 30°С

7000 при - 20°С

60000 при -25°С

9500 при - 15°С

60000 при -20°С

13000 при -10°С

60000 при -15°С

* - для классов вязкости 0W-40, 5W-40, 10W-40

** - для классов вязкости 15W-40, 20W-40, 25W-40, 40

Показатели низкотемпературных свойств

Проворачиваемость (определяется на имитаторе холодного пуска CCS) – критерий низкотемпературной текучести. Представляет собой максимальную допустимую динамическую вязкость моторного масла при запуске холодного двигателя, которая обеспечивает проворачиваемость коленчатого вала со скоростью, необходимой для успешного запуска двигателя.

Прокачиваемость (определяется на миниротационном визкозиметре MRV) – определяется на 5 о С ниже для гарантии того, что масляный насос не будет засасывать воздух. Выражается значением динамической вязкости при температуре конкретного класса. Не должна превышать величину в размере 60 000 мПа*с, обеспечивающей прокачивание по масляной системе

Показатели высокотемпературной вязкости

Кинематическая вязкость при температуре 100 о С. Для всесезонных масел данная величина должна находится в определенных диапазонах. Уменьшение вязкости ведет к преждевременному износу трущихся поверхностей – подшипников коленвала и распредвала, кривошипно-шатунного механизма. Увеличение вязкости приводит к масляному голоданию и как следствие также преждевременному износу и выходу двигателя из строя.

Динамическая вязкость HTHS (High Temperature High Shear) - с помощью данного испытания измеряется стабильность вязкостной характеристики масла в экстремальных условиях, при очень высокой температуре. Является одним из критериев определения энергосберегающих свойств моторного масла

Перед выбором моторного масла внимательно ознакомитесь с инструкцией по эксплуатации и рекомендациями производителя. Эти рекомендации основываются на конструктивных особенностях двигателя – степень нагрузок на масло,гидродинамическое сопротивление масляной системы, производительность масляного насоса.

Производитель может допускать применение различных классов вязкости моторного масла в зависимости от температуры, характерной для Вашего региона. Выбор оптимальной вязкости моторного масла обеспечит стабильно надежную работу Вашего двигателя.

Автомобильное масло - незаменимый помощник любого автомобилиста. Оно обеспечивает смазывание трущихся между собой механизмов, сглаживание поверхностей, а также удаление излишнего мусора, возникающего при взаимодейтсвии деталей друг с другом.

От правильного выбора смазочных материалов зависит многое. Во-первых, качество выбираемых масел в дальнейшем определяет износостойкость автомобильных частей. Помимо этого, характеристики приобретаемого масла определяют способность функционировать в условиях различных температурных режимов. В-третьих, использование слабокачественной продукции влечет за собой увеличение зазоров между взаимодейтсвующими механизмами, которые сопровождается увеличением расхода топлива, износом дорогостоящих деталей и механизмов и рядом других серьезных проблем.

Вязкость как один из ключевых параметров моторного масла

Выбор моторных масел определятся различными параметрами. Но для многих покупателей ключевым параметром является вязкость смазочного материала. Благодаря такому параметру автомобильное масло дольше задерживается на поверхности двигателя, правильно распределяется между трущимися деталями.

Основные параметры вязкости

Анализируя информацию, которую производители заявляют на этикетках продукции, каждому покупателю следует отличать такие понятия, как вязкость кинематическая и динамическая. Они отличаются по плотности, единицам и методам измерения и используются для показателей разных классов смазочных материалов.

Кинематическая вязкость указывает на такое свойство масла, как его текучесть. Она определяется при нормальной и максимальной рабочих температурах. Обычно для испытания выбирают такие режимы, как сорок и сто градусов по Цельсию. Измеряется данная величина в сантистоксах.

По показателям кинематической вязкости рассчитывается индекс вязкости моторного масла. Если вы хотите выбрать действительно лучший смазочный материал, индекс должен быть более 200, его имеют обычно всесезонные масла.

Динамическая вязкость характеризует силу сопротивления при перемещении жидкостей друг относительно друга вне зависимости от плотности. Единица измерения - сантипуаз.

Международный стандарт, который регламентирует вязкость масел

На сегодняшний день самой популярной классификацией смазочных материалов является SAE. Данная спецификация признана единственным международным стандартом, на основании которого рассчитывается вязкость масла исходя из температурного режима среды.

Society of Automotive Engineers - аббревиатура, которая принадлежит Обществу Автомобильных Инженеров Соединенных Штатов Америки.

Вязкость моторного масла по SAE должна отвечать таким условиям:

  • прокачиваемость - благодаря этому свойству в условиях минимальных температур обеспечивается быстрый доступ масла к маслоприёмнику;
  • проворачиваемость - способствует повышению пусковых свойств, обеспечивает необходимое сопротивление и достижение пусковых оборотов в мороз;
  • наиболее эффективная вязкость в жарких условиях;
  • кинематическая вязкость - определяет класс вязкости моторных масел.

Спецификацию SAE употребляют при определении уровня вязкости смазочного материала, учитываются требования к маслам при выпуске новой продукции, а также для исследования и детального изучения старых и новых составов.

Виды масел в зависимости от температурного режима

Вязкость смазочных материалов может меняться при различных условиях. Она находится в прямой зависимости от температуры окружающей среды, от скорости прогрева механизмов, режима работы двигателя. При низких температурах вязкость для обеспечения запуска автомобиля в холодную погоду не должна быть слишком высокой. В условиях высоких температур - наоборот, смазывающий материал помогает обеспечивать надлежащее давление и создает защитный слой между поверхностями, которые соприкасаются.

По показателю вязкости смазочные материалы делятся на зимние, летние и всесезонные. Всесезонная продукция более удобна. Она является более энергосберегающей, а также такие масла можно не менять так часто, как материалы для определенного сезона.

Диапазоны рабочих температур для разных масел по SAE

Таблица наглядно демонстрирует, в условиях каких температур можно применять разные виды смазочных материалов.

Таблица вязкости моторных масел по температуре представлена ниже.

Таблица вязкости моторных масел имеет цифровые и цифробуквенные обозначения, благодаря которым определяют сезонность масла и окружающая температура.

Зимние масла

В качестве примера можно рассмотреть вязкость моторного масла 5w30. Расшифровка вязкости моторного масла для зимних масел следующая.

Для зимних масел создано международное обозначение буквой «w». При расчетах от цифры перед ней необходимо отнять 40, в результате получаем температурный режим, при котором можно использовать смазочный материал. Чтобы узнать температуру проворачиваемости двигателя, необходимо отнять 35.

Выше приведена таблица вязкости моторных масел по температуре. Зимние масла находятся в её верхней части.

Зимние смазочные материалы пригодны к использованию при таких температурных режимах:

  • 0W - рекомендуемо к использованию при морозах до -35-30 о С;
  • 5W - рекомендуемо к использованию при морозах до -30-25 о С;
  • 10W - рекомендуемо к использованию при морозах до -25-20 о С;
  • 15W - масло рекомендуемо к использованию при морозах до -20-15 о С;
  • 20W - масло рекомендуемо к использованию при морозах до -15-10 о С.

Как было уже сказано, вязкость зимних масел также должна отвечать требованиям проворачиваемости, прокачиваемости (не должна быть выше шестидесяти тысяч сантипуаз) и обладать необходимой кинетической вязкостью.

Таблица вязкости моторных масел для холодных условий представлена ниже.

Летние виды смазочных материалов

Летняя продукция обозначена, согласно со стандартом, только цифрами (к примеру, SAE 30) и означает усредненный параметр, указывающий на вязкость материала в условиях работы при повышенных температурах.

Таблица вязкости моторных масел для летнего сезона имеет следующий вид.

Всесезонные масла

Всесезонные смазочные материалы применимы при различных тепловых режимах. В зависимости от сезона, вязкость способна меняться и обеспечивать надлежащую смазку механизмов автомобиля. Таким образом, масла для всех сезонов соответствуют критериям наивысшей вязкости проворачиваемости при холодах, и наименьшей - при жаре.

Они представлены в нижней части таблицы вязкости по температуре и состоят из комбинации летних и зимних масел.

Расшифровка следующая: допустим, вязкость моторного масла 5W-30: класс вязкости «5W» разрешает использование масла в холодный сезон, показывает, насколько легко запускается мотор в условиях низких температур; «30» - обозначает летний класс, с помощью этого показателя можно рассчитать возможность работоспособности при высоких температурах.

Выбор моторного масла по его вязкости

Как определить вязкость моторного масла? Это могут подсказать рекомендации производителя. Учитываются особенности строения двигателя, его нагрузки на смазочные материалы, уровень сопротивления, степень износа масленого насоса, степень возможного нагрева масла при разных режимах работы во всех местах мотора.

При выборе вязкости материала для зимнего сезона нужно учитывать средние температуры региона проживания. Правильный выбор масла поможет справиться автомобилю с холодным пуском, при котором возникает дополнительное трение и износ деталей. Таблица вязкости моторных масел поможет сориентироваться в большом выборе. Производители рекомендуют среди зимних масел использовать SAE 0W.

При выборе летнего масла нужно учитывать то, что детали в жаркое время года особенно могут перегреваться, обдув может быть недостаточным, поэтому масло должно быть вязким.

Заключение

Производители предлагают достаточно большой выбор смазочных материалов. Основной характеристикой которых является их вязкость. А она, в свою очередь, напрямую зависит от температурного режима.

Даже в очень умеренных климатических условиях разница в температурах между двигателя и его деталей может достигать двухсот градусов. Международный стандарт SAE предлагает на выбор масла для разных сезонов. Универсальное масло - всесезонное. Но как показывает опыт автолюбителей, при слишком большой разнице в температурных режимах, больших морозах и слишком жарком лете всесезонные смазочные материалы - далеко не самые лучшие.

Выбирая класс вязкости смазочного материала для личного автомобиля, необходимо руководствоваться такими критериями:

  • особенности строения автомобиля и мотора;
  • степень коррозии деталей, уровень изношенности двигателя;
  • основные режимы работы мотора;
  • температуру в различные сезоны по региону.

Благодаря такому параметру, как вязкость, автомобильное масло может дольше задерживаться на поверхности двигателя, правильно распределяться между трущимися деталями, не допуская пересыхания.

При выборе моторного масла для зимней эксплуатации следует обращать внимание на следующие технические характеристики, которые производители смазочных материалов обычно указывают в технических описаниях.

1. Температура замерзания (потери текучести) или Pour Point. Измеряется по ГОСТ 20287 или DIN ISO 3016 или ASTM D97. Этот параметр не имеет особого физического смысла для эксплуатации двигателя. Он указывается в целях хранения масла и указывает на то, что масло можно перелить из одной ёмкости в другую. Тем более что существуют специальные присадки – депрессоры, которые понижают температуру замерзания у минеральных масел. Добавив большое количество депрессорных присадок в минеральное гидрокрекинговое базовое масло можно добиться температуры замерзания готового масла даже ниже минус 40 С.

2. Динамическая вязкость при низкой температуре измеряемая при помощи имитатора запуска холодного двигателя CCS (Cold Cranking Simulator) по методам DIN 51 377 или ASTM D 2602. Этот важный параметр показывает насколько двигателю будет трудно провернуть холодное масло в цилиндро-поршневой группе. Измеряется в мПа*с. Чем ниже этот параметр, тем лучше. Граничные значения вязкости для разных классов масел определяет международный стандарт SAE J300.

Стандарт SAE J300 последняя редакция

3. Динамическая вязкость при низкой температуре измеряемая на миниротационном визкозиметре MRV (Mini Rotary Viscometer) . Она измеряется при температуре на 5 С ниже, чем CCS и называется ещё «вязкостью прокачивания». Это показатель говорит о том, сможет ли загустевшее масло прокачать маслонасос двигателя и с какой скоростью холодное масло будет подано по маслоканалам к точкам смазки. Измеряется в мПа*с. Все три параметра – температура замерзания, динамическая вязкость CCS и динамическая вязкость MRV, чем меньше, тем лучше. Параметры CCS и MRV, участвуют в определения класса вязкости по SAE. Стандарт SAE определяет придельные значения вязкости при определённых температурах. Например масла вязкостью 5W-XX (20, 30, 40, 50) не должны иметь вязкость CCS при минус 30 С больше, чем 6600, а вязкость MRV не должна быть больше, чем 60000. Тогда это масло имеет право маркироваться, как 5W-XX.

В бытовых условиях можно так же оценить низкотемпературные свойства с помощью различных приспособлений. И если для многих регионов России морозы под 40 С это редкость, то для Якутии это будни. Вот пример таких испытаний от драйвовчанина Андрея Тоскина АКА Белководус.

Общепризнанный технический факт - масла, изготавливаемые на основе полиальфаолефинов (ПАО), имеют лучшие низкотемпературные свойства по сравнению с минеральными гидрокрекинговыми маслами. При этом масла на ПАО имеют явные преимущества и при летней эксплуатации: более низкая испаряемость - параметр NOACK в тех. описаниях, более высокая термостабильность, низкая окисляемость и коксуемость, лучший отвод тепла от смазываемых поверхностей.

Важнейшими эксплуатационными свойствами моторных масел являются: вязкостно-температурные (вязкость, индекс вязкости, температура застывания), противоизносные, противоокислительные, диспергирующие (моющие), коррозионные и др.

Вязкостно-температурные свойства. Вязкость и ее зависимость от температуры являются важнейшим показателем качества моторных масел.

От вязкости масла зависит его способность обеспечить жидкостное, гидродинамическое трение в подшипниках, а, следовательно, их нормальную работу. Вязкость масла влияет на изнашивание шеек коленчатого вала и вкладышей подшипников. От вязкости масла зависит количество отводимой от узла трения теплоты. Чем меньше вязкость, тем лучше охлаждается подшипник, так как через него прокачивается больше масла, а следовательно, и больше теплоты отводится вместе с ним из зоны трения.

Выбор оптимальной вязкости масла усложняется тем, что она очень зависит от температуры. Например, при понижении температуры от 100 до 50 °С вязкость может увеличиться в 4-5 раз. При охлаждении моторных масел до 0 С и тем более до отрицательных температур их вязкость увеличивается в сотни и тысячи раз.

За многие годы изучения зависимости вязкости от температуры было предложено много способов построения вязкостно-температурных характеристик и формул, выражающих эту зависимость. Но лишь немногие из них дают удовлетворительную сходимость результатов расчета и практического определения вязкости вискозиметром. Это объясняется в первую очередь тем, что масла представляют собой жидкости, молекулы которых, имея сложное строение, образуют различные структуры, зависящие как от молекулярной массы, так и от группового химического состава масла.

Для описания зависимости вязкости моторных масел от температуры практически используют уравнения Вальтера и советского химмотолога Рамайя.

Формула Вальтера в экспоненциальной форме имеет вид

где - кинематическая вязкость, мм 2 /с, при температуре t , °С; Т - абсолютная температура; а - коэффициент, зависящий от индивидуальных свойств жидкости.

Для современных масел лучшие совпадения с опытными данными получаются при а = 0,6.

Формула Рамайя имеет вид

,

где - динамическая вязкость масла;Т - абсолютная температура;

А и В - коэффициенты, постоянные для данного масла.

Формула позволяет представить вязкостно-температурную характеристику масла в координатах аргумент 1/Т - функция
.

Практическое применение обеих формул показало удовлетворительное совпадение результатов расчета с опытными данными. Несколько большую точность дает формула Рамайя. Принципиальным недостатком этих уравнений является их эмпирический характер, не вскрывающий сущности физических явлений, происходящих в маслах при изменении их температуры.

На основе уравнений Вальтера и Рамайя построены и напечатаны специальные координатные сетки, на которых можно быстро построить вязкостно-температурные кривые различных моторных масел.

Практически зависимость кинематической вязкости от температуры можно изображать в трех системах координат. В диапазоне температур 50-100 °С проще всего вязкостно-температурную характеристику строить в координатах t и (рис. 1). При более широком диапазоне температур, например, от температуры застывания масла до 100 °С, рекомендуется применять сетку координат Рамайя (рис. 2).

Очень важной является задача количественной оценки крутизны вязкостно-температурной кривой. Предложено несколько таких оценочных параметров.

1. Отношение кинематиче ских вязкостей v so и v 100 . Этот простой и надежный параметр характеризует крутизну вязкостно-температурной кривой в относительно узком диапазоне температур прогретого масла, но не позволяет оценить ее в наиболее важной области низких температур, оказывающих решающее влияние на пусковые характеристики двигателя. Для моторных масел, применяемых летом или в условиях жаркого климата, v 50 /v 100 < 6; для масел, предназначенных к применению зимой и особенно в северных районах, v 50 /v 100 < 4.

2. Температурный коэффициент вязкости (ТКВ) при температурах от 0 до 100 °С

ТКВ 0 -100 = (v 0 - v 100)/v 50 .

При оценке крутизны вязкостно-температурной кривой в условиях низких температур ТКВ дает более четкую картину, чем отношение v 50 /v 100 . Для зимних масел ТКВ 0-100 <: 22, для всесезонных < 25, для летних < 35-40.

3. Индекс вязкости (ИВ). В современных отечественных и зарубежных стандартах для оценки крутизны вязкостно-температурной кривой применяют показатель ИВ, основанный на сравнении масла с двумя эталонами.

Один из этих эталонов характеризуется крутой вязкостно-температурной кривой, а другой - пологой. Эталону:

- с крутой кривой присвоен индекс вязкости, равный 0,

- а эталону с пологой кривой - 100.

Чем выше ИВ масла, тем более пологая вязкостно-температурная кривая и тем лучше масло для зимней эксплуатации.

На рис. 3 приведен график, поясняющий принцип определения вязкостно-температурных свойств масел с помощью ИВ. На графике изображены вязкостно-температурные характеристики трех масел: двух эталонных (верхняя и нижняя кривые) и одного исследуемого (средняя кривая).

Практически ИВ вычисляют по формуле (ГОСТ 25371-82)

ИВ = (v - v 1)/(v - v 2), или ИВ = (v - v 1)/v 3 ,

где v - кинематическая вязкость масла при 40 °С с ИВ = 0 и имеющим при 100 °С такую же кинематическую вязкость, как испытуемое масло, мм 2 /с; v 1 - кинематическая вязкость испытуемого масла при 40 °С, мм 2 /с; v 2 - кинематическая вязкость масла при 40 °С с ИВ = 100 и имеющим при 100 °С такую же кинематическую вязкость, как испытуемое масло, мм 2 /с; v 3 = v-v 2 .

Вязкостью называется свойство жидкости оказывать сопротивление при перемещении ее слоев под действием внешней силы. Это свойство является следствием трения, возникающего между молекулами жидкости. Различают динамическую и кинематическую вязкость.

Вязкость существенно меняется с изменением температуры. С понижением температуры взаимодействие между молекулами усиливается, и вязкость масла увеличивается. Так, например, при изменении температуры на 100 °С вязкость масла может изменяться в 250 раз. Учитывая линейный характер зависимости, можно по номограмме определить вязкость масла при любой температуре.

С повышением давления вязкость масла возрастает. Величины давления в масляной пленке, заключенной между трущимися поверхностями, могут быть значительно выше, чем сами нагрузки на эти поверхности. В масляной пленке коренного подшипника коленчатого вала двигателя величина давления достигает 500 МПа.

С повышением давления вязкость более жидких масел (с пологой вязкостно-температурной характеристикой) возрастает в меньшей степени, чем более вязких масел (с более крутой вязкостно-температурной характеристикой).

При давлении (1,5-2,0)10 3 МПа минеральное масло затвердевает. Вводимые присадки в базовое масло способствуют сохранению несущей способности масляного слоя при увеличении нагрузки.

Вязкость является основным параметром при подборе масла, поэтому она всегда указана в маркировке масла. Для маркировки вязкость определяют при тех температурах, при которых работают узлы трения. Моторные масла для двигателей внутреннего сгорания маркируют по кинематической вязкости мм 2 /с (Сст) при температуре 100 °С, которая принята в качестве средней температуры масла в двигателе (картер, система смазки).

Для получения масел с хорошими вязкостно-температурными свойствами в качестве базовых используют маловязкие масла, имеющие вязкость менее 5 мм 2 /с при температуре +100 °С, и добавляют в них вязкостные присадки (загустители). В качестве присадок применяют такие полимерные соединения, как полиизобутилен, полиметакрилаты, полиалкилстиролы и др.

С понижением температуры объем макромолекул полимера уменьшается (молекулы «свертываются» в клубки). При повышении температуры клубки макромолекул «разворачиваются» в длинные разветвленные цепи, присоединяя молекулы базового масла, объем их становится больше, и вязкость масла возрастает.

Загущенные присадками масла обладают необходимым уровнем вязкости при положительных температурах 50-100 °С, пологой кривой изменения вязкости (рис. 4) и, следовательно, высоким индексом вязкости, равным 115-140. Такие масла получили название всесезонных, так как имеют одновременно свойства одного из зимних классов и одного из летних.

Рис. 4. Влияние вязкостной присадки на вязкость масла

при различных температурах:

1 – маловязкое масло; 2 – то же масло с вязкостной

присадкой (загущенное)

В системах смазки современных автомобильных двигателей применяются именно загущенные всесезонные масла. При их использовании мощность двигателя повышается на 3-7 % (что обеспечивается высоким индексом вязкости и способностью загущенных масел снижать вязкость в парах трения при высоких скоростях сдвига), облегчается пуск и сокращается время прогрева, снижаются механические потери на трение, и, как следствие, расход топлива, увеличиваются долговечность деталей и срок службы масел. Экономия топлива достигает 5 % при больших пробегах и 15 % при коротких пробегах в зимнее время с частыми пусками двигателя (рис. 5).

Рис. 5. Снижение расхода бензина при движении автомобиля

по мере прогрева двигателя

К недостаткам загущенных масел относят низкую стабильность загущенных присадок при высоких температурах, что вызывает ухудшение вязкостно-температурных характеристик масел при длительной бессменной работе их в двигателях.

Индекс вязкости (ИВ), оценивающий вязкостно-температурные свойства масел, является условным показателем, характеризующим степень изменения вязкости масла в зависимости от температуры и определяемый путем сравнения вязкости данного масла с двумя эталонными маслами, вязкостно-температурные свойства одного из которых приняты за 100, а второго - за 0 единиц.

Индекс вязкости определяют по номограмме (рис. 6), расчетным путем или по специальным таблицам. Для определения ИВ по номограмме необходимо знать значения кинематической вязкости масла при температурах +50 °С и +100 0 С.

Рис. 6. Номограмма для определения индекса вязкости моторных масел

Чем выше ИВ, тем более пологой кривой (рис. 7) характеризуется масло и тем лучше его вязкостно-температурные свойства. Из двух масел с одинаковой вязкостью при температуре +100 °С, но с разными ИВ, одно (1) можно применять только в теплое время, так как при низких температурах оно теряет подвижность, а другое (2) - всесезонно, так как оно обеспечит легкий пуск двигателя при низких температурах воздуха и жидкостное трение при рабочих температурах.

Рис. 7. Зависимость вязкости моторных масел от температуры

для различных значений индекса вязкости: 1 – ИВ 90; 2 – ИВ 140

Учитывая то обстоятельство, что вязкость масла и индекс вязкости определяют работоспособность узла трения, то в стандартах на масла эти параметры нормируются в количественном выражении. Для автомобильных масел ИВ должен быть не ме нее 90.

Поэтому при производстве моторных масел необходимо лю быми доступными и эффективными методами уменьшить зависимость вязкости масла от температуры, т. е. увеличить их ИВ и понизить температуру застывания. Это относится в первую очередь к зимним и всесезонным маркам масел.

Температурные характеристики моторных масел следующие:

Температура вспышки – самая низкая температура, при которой пары нагреваемого в стандартных условиях масла образуют с воздухом смесь, которая вспыхивает от открытого огня, но быстро гаснет из-за недостаточно интенсивного испарения.

Температура воспламенения – та температура, при которой пары нагреваемого в стандартных условиях масла образуют с воздухом такую смесь, которая воспламеняется и горит от открытого огня не менее 5 с. Температура вспышки является показателем пожароопасного масла. По ней можно судить о присутствии в масле летучих фракций, которые могут быстро испаряться в работающем двигателе и увеличивать расход масла на угар. Понижение температуры вспышки масла свидетельствует о разбавлении масла топливом.

Температура застывания (температура начала текучести) – самая низкая температура, при которой масло еще обладает некоторой текучестью. Определяемая в стандартных условиях температура застывания на 3 °С выше действующей температуры затвердевания, при которой в течение 5 с масло находится в неподвижном состоянии.

Температура помутнения – та, при которой появляются мелкие кристаллы парафина и масло мутнеет. В последующем кристаллы образуют каркас и масло теряет подвижность. Между кристаллами масло остается еще жидким и при сильном встряхивании текучесть масла может восстановиться. Температура помутнения зависит от скорости охлаждения, термической обработки масла и от механических воздействий.

Температура застывания служит предельной минимальной температурой разливки и, частично, эксплуатации масла. Минимальная температура эксплуатации моторных масел определяется по низкотемпературным характеристикам вязкости и перекачки.

Застывание - свойство, определяющее потерю текучести масла. При понижении температуры до определенной величины текучесть масла снижается, а при дальнейшем понижении оно застывает. С увеличением вязкости масла из него выделяются наиболее высокоплавкие углеводороды (парафин, церезин), а при полной потере текучести масла микрокристаллы твердых углеводородов (парафина) образуют пространственную кристаллическую решетку, связывающую все масло в единую неподвижную массу.

Температуру, при которой масло теряет текучесть, называют температурой застывания. Нижний температурный предел применения масла примерно на 8-12 °С выше температуры застывания, т.е.:

t ОВ = t 3 - (8-12) °C,

где: t ов - нижний температурный предел окружающего воздуха (применения данной марки моторного масла), 0 С;

t 3 - температура застывания определенной марки масла, регламентируемая стандартом, 0 С.

Снижения температуры застывания масел добиваются путем депарафинизации (частичного удаления парафинов) или добавлением присадок-депрессоров в процессе их производства. Депрессоры предотвращают образование кристаллической решетки, когда кристаллы парафина объединяются в объемные структуры. Понижая температуру застывания масла, депрессоры не влияют на его вязкостные свойства.

Противоизносные (смазываю щие) свойства характеризуют способность масла препятствовать износу поверхностей трения. Образующаяся на трущихся поверхностях прочная пленка исключает непосредственный контакт деталей. Высокие противоизносные свойства масла особенно востребованы при небольших частотах вращения коленчатого вала, когда высоки удельные нагрузки, а также когда геометрические формы или размеры деталей имеют существенные отклонения, что чревато задирами, схватыванием и разрушением трущихся поверхностей.

Противоизносные свойства масла зависят от его вязкости, вязкостно-температурной характеристики, смазывающей способности, чистоты масла.

С повышением температуры масла адсорбционный слой ослабляется, а при достижении критической температуры 150-200 °С, на грани прочности пленки и сухого трения, разрушается. Масла с высокими противоизносными свойствами способны формировать для предупреждения изнашивания такой режим трения, который исключает непосредственный контакт трущихся поверхностей металлов. Поэтому возможное в данном случае изнашивание вызывается цикличностью нагрузок на отдельных участках поверхностей трения и усталостными разрушениями металла (усталостные трещины в галтелях коленчатых валов).

О смазывающей способности («маслянистости») масла судят по его химическому составу, вязкости, наличию присадок. На маслянистость влияют содержащиеся в маслах и обладающие высокими поверхностно-активными свойствами смолистые вещества, высокомолекулярные кислоты, сернистые соединения.

Правильный выбор вязкости масла в значительной мере влияет на скорость изнашивания. Высоковязкие масла при низкой температуре загустевают и плохо поступают к трущимся поверхностям деталей. В то же время пуск и прогрев двигателя на менее вязких (жидких) маслах облегчается, режим жидкостного трения наступает быстрее.

Для снижения потерь на трение в моторные масла вводят антифрикционные присадки, основой которых служат беззольные органические соединения, содержащие благородные элементы (никель, кобальт, хром, молибден). Малорастворимые поверхностно-активные вещества такого типа образуют в узлах трения многослойные защитные пленки с внедрением легирующих металлов в зону трения. Особое место при этом принадлежит молибдену, атомы которого способны связывать атомы железа и образовывать структуры, стойкие к питтингу (местному выкрашиванию металла), фреттинг-коррозии и др. Более того, только этот металл образует в результате окисления поверхностных слоев оксиды, температура плавления и твердость которых на порядок ниже, чем у металла поверхности трения.

Смазочные свойства моторного масла , как и масел для других машин и механизмов, обусловлены его вязкостью и маслянистостью, влияние и механизм действия которых различны.

Вязкость как свойство, связанное с внутренним (молекулярным) трением, проявляет себя при жидкостном (гидродинамическом) трении. Маслянистость же масла важна при возникновении граничного трения. В этих условиях прочность масляной пленки является решающим фактором, препятствующим непосредственному контакту трущихся деталей.

Установлено, что прочность масляной пленки зависит от полярной активности молекул масла, т. е. от их способности образовывать прочные слои строго ориентированных молекул.

Ориентировочное поле полярно-активных молекул образует на поверхности трущихся деталей своеобразный ворс. Чем длиннее полярно-активные молекулы масла и чем прочнее они соединяются с поверхностью трущихся деталей, тем выше маслянистость масла. Но это очень упрощенное объяснение, позволяющее понять лишь основную сущность этого явления.

В действительности в реальных условиях возникают обычно не мономолекулярные, а мультимолекулярные ориентированные слои, в которых внутримолекулярное трение приобретает особый характер, заключающийся в том, что происходит трение между отдельными слоями молекул, а не между отдельными молекулами. При соответствующем подборе полярно-активных веществ, входящих в масло, число слоев может доходить до тысячи и более, а их суммарная толщина до 1,5-2 мкм. С повышением температуры верхние слои, не имеющие прочной связи с поверхностью детали, дестабилизируются и разрушаются, но первый мономолекулярный слой разрушить трудно.

Экспериментально установлено, что коэффициент трения между деталями мало зависит от числа мономолекулярных слоев и практически одинаков как при одном, так и при нескольких десятках таких слоев. Этим можно объяснить тот факт, что достаточно добавить в масло очень немного веществ, обладающих высокой полярной активностью, как маслянистость масла, т. е. прочность его масляной пленки резко возрастает.

Процессы, связанные с маслянистостью, изучают на специальных машинах трения. Количественное определение смазывающих свойств масел ведут с помощью четырехшариковой машины (ГОСТ 9490-75*). Принцип действия этой машины заключается в следующем.

Три шарика диаметром 12,7 мм из стали ШХ-15 (подшипниковой серии) устанавливают неподвижно в виде треугольника в специальной чашеобразной обойме, в которую затем наливают испытуемое масло. На эти шарики накладывают сверху такой же шарик (четвертый), закрепленный во вращающемся, как у сверлильного станка, шпинделе.

Частота вращения шпинделя 1460±70 мин -1 . Проворачивание нижних шариков при испытании не допускается.

На четырехшариковой машине проводят серию определений, каждое из которых выполняют на новой пробе испытуемого масла и новых шариках. На машине определяют критическую нагрузку, нагрузку сваривания, индекс задира и показа тель износа . При определении первых трех параметров продолжительность испытаний составляет 100,2 с, при оценке показателя износа - 600,5 мин. Режимосевой нагрузки должен быть выдержан в соответствии со стандартом.

Индекс задира и критическая нагрузка характеризуют способность масла защищать трущиеся поверхности от повреждений и задиров, а нагрузка сваривания оценивает предельную нагрузку, которую может выдержать данное масло. Показатель износа определяет влияние смазочного материала на изнашивание смазываемых поверхностей.

Его оценивают по диаметру пятен (следов) на всех трех нижних шариках. Измерения осуществляют посредством микроскопа с 24-кратным увеличением и отсчетной шкалой с ценой деления не более 0,01 мм. Каждое пятно измеряют в двух направлениях: в направлении скольжения и перпендикулярном ему.

Результатом считается среднее арифметическое всех измерений по трем нижним шарикам.

Принцип действия четырехшариковой машины показан на рис. 8.

Рис. 8. Принцип действия четырехшариковой машины

для определения противоизносных и противозадирных свойств масел:

а - схема нагружения шариковой пирамиды; б - схема

четырехшариковой обоймы; в - конструкция основного узла;

1 - неподвижные шарики; 2 - вращающийся шарик;

3 - исследуемое масло

Противоокислительные свойства характеризуются стойкостью масла к окислению и полимеризации в процессе работы двигателя, а также разложению при хранении и транспортировании.

Продолжительность работы масла в двигателе зависит от его химической стабильности, под которой понимается способность масла сохранять свои первоначальные свойства и противостоять внешнему воздействию при нормальных температурах.

На стабильность моторных масел оказывают влияние следующие факторы : химический состав, температурные условия, длительность окисления, каталитическое действие металлов и продуктов окисления, площадь поверхности окисления, присутствие воды и механических примесей. Повышенное давление воздуха ускоряет процесс окисления масла, так как усиливается процесс его взаимной диффузии с воздухом.

На процесс окисления решающее влияние оказывает температура . Масла, хранящиеся при температуре 18-20 °С, сохраняют свои первоначальные свойства в течение 5 лет. Начиная с 50-60 °С, скорость окисления удваивается с увеличением температуры на каждые 10 °С. Поэтому высокая тепловая напряженность деталей форсированных двигателей, с которыми приходится контактировать моторному маслу, и взаимодействие с прорывающимися в картер газами из камер сгорания (на такте сжатия их температура составляет около 150-450 °С для бензиновых двигателей и около 500-700 °С для дизелей) резко ухудшают условия их работы. Повышение тепловой напряженности моторных масел связано также с отдельными конструктивными решениями: использование наддува; применение герметизированной системы охлаждения (увеличивает температуру поршня на 10-20 0 С); уменьшение объема системы смазки двигателя; масляное охлаждение поршней и др.

Термоокислительную ста бильность определяют как устойчивость масла к окислению в тонком слое при повышенной температуре методом оценки прочности масляной пленки.

Для замедления реакций окисления и уменьшения образования отложений в двигателе в масла вводят противоокислительные присадки.

Детергентно - диспергирующим (моющим) свойством масла называют его способность препятствовать слипанию углеродистых частиц и удерживать их в состоянии устойчивой суспензии, что значительно снижает процессы образования лаковых отложений и нагара на горячих поверхностях деталей двигателя.

При использовании масел с хорошими диспергирующими свойствами детали двигателей выглядят чистыми, как бы вымытыми, отсюда и появление термина «моющие».

Диспергирующие свойства масел оценивают в баллах от 0 до 6 по методу ПЗВ. Образование лаковых отложений на деталях двигателя, работающего на маслах с моющими присадками, уменьшается в 3-6 раз, т.е. с 3-4,5 до 0,5-1,5 балла.

Моющие присадки бывают зольными и беззольными. Зольные присадки содержат бариевые и кальциевые соли сульфикислот (сульфонаты), а также алкилфеноляты щелочноземельных металлов бария и кальция. Масла с зольными присадками в количестве 2-10 %, сгорая, образуют золу, прилипающую к поверхности деталей. Беззольные моющие присадки не образуют золы при сгорании масел, так как не содержат металлов.

Коррозионные свойства масел зависят от наличия в них органических кислот, перекисей и других продуктов окисления, сернистых соединений, неорганических кислот, щелочей и воды.

Коррозионность свежего масла, в котором присутствуют природные органические кислоты и сернистые соединения, незначительна, но резко возрастает в процессе эксплуатации. Присутствие в свежих маслах органических (нафтеновых) кислот связано с их неполным удалением в процессе очистки.

Коррозионное действие масел связано также с содержанием в них 15-20 % сернистых соединений в виде сульфидов и. компонентов остаточной серы, которые при высоких температурах приводят к выделению сероводорода, меркаптанов и других активных продуктов. В условиях высоких температур сернистые соединения особенно агрессивны по отношению к серебру, меди, свинцу. В процессе использования масла содержание кислот в нем возрастает в 3-5 раз, что зависит от его химической стабильности, содержания антиокислителей и условий работы.

Оценку коррозионной стойкости производят по кислотному числу, которое для свежих масел не превышает 0,4 мг КОН на 1 г масла. В коррозионном отношении эта концентрация практически не опасна.

Коррозионные процессы в двигателях замедляют нейтрализацией кислых продуктов путем введения антикоррозионных присадок; замедлением процессов окисления путем добавления в масла антиокислительных присадок; созданием на поверхности металла (при изготовлении деталей) стойкой защитной пассивированной пленки из органических соединений, содержащих серу и фосфор.

Известны присадки и ингибиторы коррозии и их композиции, которые снижают все виды износа.

Подбор масла с оптимальными значениями эксплуатационных свойств зависит от конструкции и режима работы узла трения.

Вязкость - одно из важнейших свойств масла, имеющее многостороннее эксплуатационное значение. От вязкости в значительной степени зависит режим смазки пар трения, отвод тепла от рабочих поверхностей и уплотнение зазоров, энергетические потери в двигателе, его эксплуатационные свойства. Быстрота пуска двигателя, прокачивание масла по системе смазки, охлаждение трущихся поверхностей деталей и их очистка от загрязнений также зависят от вязкостно-температурных свойств масла.

Масла повышенной вязкости используются для высоконагруженных, низкооборотных или работающих в условиях напряженного теплового режима двигателей. При этом, чем выше вязкость масла в работающем двигателе, тем надежнее уплотнения, меньше вероятность прорыва газов, ниже угар масла. Поэтому масла с большой вязкостью применяют в случаях, когда двигатель изношен, зазоры увеличены или условия эксплуатации характеризуются высокой запыленностью, повышенной температурой, изменяющимися в больших пределах нагрузками.

Масла с меньшей вязкостью применяют для легконагруженных высокооборотных двигателей. Они облегчают пуск двигателя, лучше прокачиваются по системе смазки и очищаются от механических примесей, обеспечивают хороший отвод тепла от рабочих поверхностей деталей.

Температура масла значительно влияет на его кинематическую вязкость. С понижением температуры вязкость увеличивается, а с повышением - уменьшается. Чем меньше перепад вязкости в зависимости от температуры, тем в большей степени масло удовлетворяет эксплуатационным требованиям.

Увеличение вязкости масел с понижением температуры приводит к значительным трудностям при использовании автомобилей, особенно в зимнее время года при пуске двигателей. При отрицательных температурах в диапазоне от -10 °С до -30 °С резко увеличивается момент сопротивления проворачиванию коленчатого вала двигателя, медленнее достигается минимальная пусковая частота вращения, ухудшается подача масла к трущимся поверхностям деталей.

Надежный пуск бензиновых двигателей осуществляется при значениях частоты вращения коленчатого вала в пределах 35 - 50 мин -1 при температуре окружающего воздуха -10 0 С... -20 0 С, а дизелей с различным способом смесеобразования - в среднем в интервале 100 - 200 мин -1 при температуре 0 0 С. Вязкость моторного масла, при которой пусковая система современных двигателей различной конструкции не обеспечивает вращения коленчатого вала, изменяется в пределах (4 - 10) ·10 3 мм 2 /с. Поэтому для обеспечения пуска двигателя в холодное время моторные масла должны обладать низкой вязкостью при отрицательных температурах.

Вязкость моторного масла является общим параметром для всех моторных масел, который указывает на качество: он показывает, при какой температуре можно использовать масло, заведётся ли зимой мотор, и сможет ли прокачаться масло по системе смазки.

Кто классифицирует

Единственной всемирной организацией, которая занимается разработкой стандартов по вязкости масла, является SAE (Society of Automotive Engineers)- Общество Автомобильных Инженеров США. Организация появилась в начале 19 века, когда автомобильная индустрия только зарождалась.

Для классификации масла используют его кинетическую и динамическую вязкость при рабочей температуре и при отрицательной температуре, которая показывает, можно ли завести мотор в мороз.

Цифры на этикетке

Все производители моторных масел указывают на своей этикетке вязкость масла, выглядит это следующим образом:

SAE 10w-40

SAE обозначает, что масло классифицировано по стандарту данной организации

10w — вязкость при отрицательных температурах, то есть возможности использования масла в зимний период. Буква w обозначает winter, то есть зимнее, а индекс 10 — показывает низкотемпературную вязкость

Цифра 40 указывает высокотемпературную вязкость и имеет определённые характеристики вязкости при температурах 100 и 150 градусов Цельсия.

Сезонность масел

На сезонность указывают те же цифры. Масло может быть чисто летним, зимним или всесезонным. Чем шире характеристике масла, тем оно дороже, значительно проще изготовить масло, которое будет иметь хорошие характеристики при пуске в мороз, но посредственные при высоких температурах, чем масло, которое будет иметь хорошие показателе на всех режимах использования.

Зимние

Зимние масла имеют в обозначении только индекс w, но не имеют высокотемпературный показатель в обозначении. Стандартный ряд зимнего моторного масла: SAE 0w, 5w, 10w, 15w, 20w, 25w .

Цифра показывает, при какой минимальной температуре можно использовать масло, для этого надо отнять 35. То есть, для масла с вязкостью SAE 10w предельной температурой будет 10-35=-25 градусов. При этой температуре пуск двигателя будет нормальным, если температура будет ниже, тогда запустить двигатель будет проблематичнее, так как масло замёрзнет и станет более густым, желеобразным, и стартеру будет сложно его прокрутить. Из-за этого бывают задиры на вкладышах и невозможность пуска зимой, особенно на дизельных моторах, которые очень чувствительны к оборотам при пуске.

Летние

В летних моторных маслах наоборот, зимний индекс w не регламентируется.

Стандартный ряд летнего моторного масла: SAE 20, 30, 40, 50, 60 .

Данный показатель указывает вязкость моторного масла при температуре 100 и 150 градусов, именно эти два показателя критичны для нормальной работы масла. Чем больше число, тем выше вязкость. В современных моторах есть такая тенденция, что данная цифра снижается, то есть вязкость должна быть ниже, это связано с тем, что в новых моторах применяются очень мелкие зазоры в деталях, и такому маслу легче в них проникнуть.

Всесезонные

Но для повседневной эксплуатации сезонные масла вряд ли подойдут, потому что мало кто будет менять масло по сезону- осенью и весной. Для этого и разработали всесезонное моторное масло, которое можно использовать и зимой, и летом.

В обозначении такого масла присутствуют оба индекса- зимний и летний, разделяемые знаком тире «-«. Пример обозначения: SAE 5w-50 . Чем больше будет разница между первым числом и вторым, тем дороже будет масло, так как сложнее обеспечить необходимые характеристики для более широкого диапазона температур. К примеру, масло SAE 5w-50 будет значительно круче, чем SAE 10w-40.

Показатели

Что обозначают те все показатели, которые указаны на этикетке? Практическое применение разобрали, теперь можно глянуть изнутри, как оно всё устроено.

Масла стандартизируются по следующим критериям:

  • Максимальные показатели низкотемпературной вязкости при прокачивании и проворачивании для зимнего масла
  • Показатели кинетической вязкости при температурах 100 и 150 градусов- для летних масел.
Класс по SAE Вязкость низкотемпературная Вязкость высокотемпературная
Проворачивание Прокачиваемость Вязкость, мм2/с при t = 100 °C Min вязкость, мПа·с при t = 150 °C и скорости сдвига 106 с-1
Max вязкость, мПа·с, при температуре, °С Min Max
0 W 6200 при — 35 °С 60000 при — 40 °C 3,8
5 W 6600 при — 30 °С 60000 при — 35 °С 3,8
10 W 7000 при — 25 °С 60000 при — 30 °С 4,1
15 W 7000 при — 20 °С 60000 при — 25 °С 5,6
20 W 9500 при — 15 °С 60000 при — 20 °С 5,6
25 W 13000 при — 10 °С 60000 при — 15 °С 9,3
20 5,6 < 9,3 2,6
30 9,3 < 12,6 2,9
40 12,6 < 16,3 2,9 (0W-40; 5w-40;10w-40)
40 12,6 < 16,3 3,7 (15W-40; 20W-40; 25W-40)
50 16,3 < 21,9 3,7
60 21,9 26,1 3,7

Низкотемпературная вязкость

Проворачиваемось — это по сути тот показатель, который определяет, насколько сложно будет прокрутить коленвал в минусовую температуру.

Прокачиваемость показывает, насколько легко будет прокачать масло по системе смазки, через зазоры в сопрягаемых деталях. Этот показатель важен для сопрягаемых деталей, если в зазоры между коленвалом и вкладышами не сможет закачаться масло, то будут задиры и скорый ремонт двигателя.

Обратите внимание на показатели прокачиваемости или проворачиваемости масла: возле них указана минимально допустимая температура.

Высокотемпературная вязкость

Высокотемпературная вязкость моторного масла регламентируется при двух значениях рабочей температуры: 100 и 150 °C.

  • вязкость при температуре 100 градусов
  • вязкость при температуре 150 градусов

Эти показатели указывают, насколько хорошо масло справляется с температурой и поддерживает вязкость на нужном уровне.

Какую вязкость лучше выбрать для двигателя?

А здесь не надо ничего выдумывать, производитель автомобиля всё посчитал до вас, просто посмотрите в сервисную книжку, там всё написано.

Зимнюю вязкость можно выбрать, ориентируясь на район проживания и температуру воздуха зимой. Если это юг и температура редко опускается ниже -10 градусов- подойдёт любое, хоть 10w, хоть 0w; а если зимой нередки морозы -30, лучше взять 0w, которое рассчитано до холодов -35 градусов.

По высокотемпературной вязкости, при ремонте двигателей, в которых использовалось масло с вязкостью 20-30, были отмечены задиры и имелся повышенный износ, хотя это масло рекомендовалось производителем, в то время как при использовании на том же моторе масло с вязкостью 40-50 таких проблем не наблюдалось. В сё дело в том, что слишком жидкое масло образовывало не сильно стабильную плёнку, но эта проблема отчасти была решена при использовании современных .

Понравилось? Лайкни нас на Facebook