Как устроен глушитель автомобиля. Как работает глушитель шума выстрела Назвать и показать основные части глушителя

Давайте разберемся, из чего состоит выхлопная система автомобиля. Вообще, система выпуска отработавших газов в автомобиле выполняет три основные функции:

  • Отводит отработавшие газы от двигателя к задней части автомобиля, где они выбрасываются в атмосферу
  • Заглушает звук от работающего двигателя
  • Нейтрализует остатки не сгоревшего топлива в катализаторе и уменьшает выброс вредных веществ в атмосферу

Выхлопная система состоит из следующих компонентов:

  • Выпускной коллектор
  • Катализатор
  • Глушитель (глушители)
  • Выхлопная труба (трубы)

Нет единого стандарта на конфигурацию выхлопной системы, и производители автомобилей конструируют и рассчитывают систему под каждый автомобиль.

Выпускной коллектор

Выпускной коллектор используется для передачи выхлопных газов из цилиндров в выхлопную систему. Выпускной коллектор крепится к головке блока цилиндров гайками или болтами на специальной прокладке из асбеста или из тонких металлических пластин. В коллектор может быть установлен первый датчик кислорода, до катализатора. Изготавливается из чугуна или стальных труб, как единое целое, не подвержен износу и поломкам. Чаще всего прогорают прокладки или образуются трещины в коллекторе, через которые происходит утечка отработавших газов или подсос воздуха, что определяется датчиком кислорода.

Выхлопные трубы

Выхлопные трубы соединяют компоненты выхлопной системы в одно целое, имеют одинаковый диаметр на всем протяжении, крепятся к днищу автомобиля на резиновых подвесах, для уменьшения передачи вибрации на кузов автомобиля. Лучший материал для изготовления компонентов выхлопной системы – нержавеющая сталь. Двигатель, в результате сгорания топлива, вырабатывает достаточно много воды, и она постоянно присутствует в трубах и глушителях и вызывает коррозию. В самых критических случаях глушитель может попросту развалиться в неподходящий момент, или вовсе попасть на карданный вал, и потребуется дорогостоящий ремонт карданов и сварка.

Каталитический нейтрализатор

Каталитический нейтрализатор (катализатор) дожигает не сгоревшее топливо и преобразует вредные составляющие отработавших газов в безопасные для окружающей среды. Корпус катализатора во время работы сильно разогревается, и поэтому отделен от кузова термо защитным экраном.

Глушители

Глушители выполняют функцию глушения звука от работы ДВС. Глушители бывают различных конструкций и размеров, но все выполняют одну работу. Внутри глушителя все внутреннее пространство разделено перегородками с перфорированными трубками, которые должны эффективно уменьшать звуки от мотора.

Оснащенный двигателем внутреннего сгорания автомобиль нуждается в системе, через которую бы осуществлялся выпуск отработанных газов. Такая система, названная выхлопной, появилась одновременно с изобретением двигателя, и наряду с ним на протяжении многих лет совершенствовалась и модернизировалась. Из чего состоит выхлопная система автомобиля, и как работает каждый ее компонент, мы расскажем в этом материале.

Три столпа выхлопной системы

Когда топливовоздушная смесь в цилиндре двигателя сгорает, образуются отработанные газы, которые необходимо вывести, чтобы цилиндр снова наполнился необходимым количеством смеси. Для этих целей автомобильные инженеры изобрели выхлопную систему. Она состоит из трех основных компонентов: выпускного коллектора, каталитического конвертера (), глушителя. Рассмотрим каждый из компонентов этой системы в отдельности.

Схема выхлопной системы. В данном случае резонатор — это дополнительный глушитель.

Выпускной коллектор появился практически одновременно с ДВС. Он представляет собой навесное оборудование двигателя и состоит из нескольких труб, которые соединяют камеру сгорания каждого цилиндра двигателя с каталитическим конвертером. Изготавливается выпускной коллектор из металла (чугун, нержавеющая сталь) или керамики.

Так как коллектор постоянно пребывает под воздействием высоких температур отработанных газов, более «жизнеспособными» являются коллекторы из чугуна и нержавеющей стали. Причем, коллектор из нержавеющей стали предпочтительнее, так как в процессе охлаждения агрегата после остановки автомобиля на нем собирается конденсат. В чугунном коллекторе конденсат может вызвать коррозию, а в коллекторе из нержавейки коррозии не возникает. Преимущество керамического коллектора – в его малом весе, но он не может длительное время выдерживать влияния высоких температур отработанных газов и трескается.

Принцип работы выпускного коллектора прост. Отработанные газы через выпускной клапан попадают в выпускной коллектор, а оттуда – в каталитический нейтрализатор. Кроме основной функции отвода выхлопных газов, коллектор помогает камерам сгорания двигателя продуваться и «забирать» новую порцию отработанных газов. Происходит это благодаря разнице давления газов в камере сгорания и коллектора. В коллекторе давление ниже, чем в камере сгорания, поэтому в трубах коллектора образуется волна, которая, отражаясь пламегасителя (резонатора) или каталитического нейтрализатора, идет назад к камере сгорания, и в момент очередного цикла выхлопа способствуют выведению очередной порции газов. Скорость создания этих волн зависит от скорости оборотов двигателя: чем выше обороты, тем быстрее «ходит» в коллекторе волна, и тем скорее камера сгорания цилиндра освобождается от выхлопных газов. Выпускной коллектор – один из наиболее популярных агрегатов для тюнинга.

Из выпускного коллектора отработанные газы попадают в каталитический конвертер или нейтрализатор. Он состоит из керамических сот, на поверхности которых находится слой платиноиридиевого сплава.

Соприкасаясь с этим слоем, из выхлопных газов посредством химической реакции восстановления образуются оксиды азота и кислород, который используется для более эффективного сгорания находящихся в выхлопе остатков топлива. В результате воздействия реагентов катализатора, из него в выхлопную трубу подается смесь из азота и диоксида углерода.

Наконец, третьим основным элементом выхлопной системы автомобиля является глушитель, который представляет собой устройство, предназначенное для снижения уровня шума при выпуске отработанных газов. Он, в свою очередь, состоит из четырех компонентов: трубы, соединяющей резонатор или каталитический конвертер с глушителем, глушитель, выхлопная труба и наконечник выхлопной трубы.

Очищенные от вредных примесей выхлопные газы поступают от катализатора по трубе в собственно глушитель. Корпус глушителя изготовляют из различных видов стали: обычной (срок службы – до 2 лет), алюминизированной (срок службы – 3-6 лет) или нержавеющей (срок службы – 10-15 лет). Он имеет многокамерное строение, при этом каждая камера снабжена отверстием, через которое выхлопные газы поступают в следующую по очереди камеру. За счет такой многократной фильтрации, выхлопные газы глушатся, звуковые волны выхлопа гасятся. Далее газы поступают в выхлопную трубу. В зависимости от мощности установленного на автомобиль двигателя, может варьироваться количество выхлопных труб: от одной до четырех. Последним элементом выступает наконечник выхлопной трубы. Он изготавливается из хромированной стали и выполняет эстетическую функцию. Выхлопная труба и ее наконечники также являются элементами тюнинга автомобиля.

На автомобилях с устанавливают глушители меньших размеров, чем на машинах с атмосферными моторами. Дело в том, что турбина использует для работы выхлопные газы, поэтому в выхлопную систему попадает лишь некоторая их часть – вот почему у таких моделей маленькие глушители.

В конструкции автомобиля используется множество систем - охлаждающая, масляная, система впрыска и так далее. Но мало кто уделяет внимание выхлопной. А ведь это не менее важная составляющая любого автомобиля. С годами конструкция данной системы совершенствуется. О том, из чего состоит автомобиля и как она работает, мы поговорим в нашей сегодняшней статье.

Назначение

Как известно, в двигателе при работе происходит воспламенение смеси. Это возгорание сопровождается характерным звуком. При взрыве образуется колоссальная толкательная энергия. Она настолько велика, что способна поднять поршень в верхнюю мёртвую точку. В последнем такте работы происходит выпуск газов. Они под давлением выходят в атмосферу. Но для чего же нужна система выхлопа? Она служит для гашения звуковых колебаний. Ведь без нее работа даже самого технологичного мотора была бы громкой и невыносимой.

Таким образом, система выхлопа выполняет следующие функции:

  • Вывод из цилиндров двигателя продуктов горения.
  • Снижение уровня токсичности газов.
  • Исключение попадания в салон автомобиля.

Устройство

Данная система объединяет в себе несколько составляющих. Кроме того, она непосредственно связана с работой ГРМ. Итак, классическая система выхлопа ВАЗа состоит из:

  • Приемной трубы.
  • Катализатора.
  • Резонатора.
  • Глушителя.
  • Различных крепежных и уплотнительных элементов.
  • Кислородного датчика.

Если рассматривать дизельные автомобили, то в конструкции также будет иметься сажевый фильтр. Что собой являют все эти элементы? Устройство каждого из них рассмотрим ниже.

Приемная труба

Этот элемент является первым в списке и идет сразу за выпускным коллектором. В приемную трубу попадают еще не остывшие газы. Поэтому температура может достигать 600 и более градусов Цельсия. В простонародье приемную трубу называют «штанами» за ее характерную форму.

Данный элемент изготавливается из особо прочного и огнестойкого металла. Обычно он черновой (ржавеет с годами), но на более дорогих авто делается из нержавейки. Если это двигатель с большим объемом камеры сгорания, в конструкции системы может использоваться несколько таких труб. Это делается с целью уменьшения сопротивления газов. В противном случае мотор будет «задыхаться» своими же газами.

Резонатор

Он выполнен в форме цилиндрической банки. Именно в резонаторе происходит первое разделения потока выхлопных газов. Также за счет увеличения диаметра уменьшается скорость движения выхлопа.

Газы постепенно рассеиваются в этой камере. Благодаря этому происходит гашение вибраций и частично звука. Так же как и «штаны», резонатор изготавливается из огнестойкого металла.

Катализатор

Это, пожалуй, самая сложна и дорогая составляющая в любой системе выхлопа. Корпус данного элемента тоже выполнен из огнестойкого металла. Однако, в отличие от резонатора и приемной трубы, он многослойный. Внутри этой «банки» имеется керамический стержень. Дополнительно катализатор оснащается проволочной сеткой. Она покрывает второй элемент керамического материала.

Кроме этого, в устройстве имеется слой теплоизоляции с двойными стенками. Почему катализатор так дорого стоит? Помимо керамики, здесь используются дорогостоящие материалы - палладий или платина. Именно эти составляющие преобразуют вредные газы в водород и безопасные пары. Ввиду этого минимальная стоимость нового нейтрализатора составляет 40 тысяч рублей.

Сажевый фильтр

Если рассматривать устройство выхлопной системы дизельного двигателя, стоит отметить и этот элемент. Он является дополнением к каталитическому нейтрализатору. В основе фильтра лежит матрица, изготовленная из карбида кремния. Она имеет ячеистую структуру и обладает каналами малого сечения. Последние попеременно закрыты с одной и другой стороны. Боковая часть элемента играет роль фильтра и обладает пористой структурой.

До недавнего времени ячейки матрицы имели квадратную форму. Сейчас производители используют 8-угольные ячейки. Так производится лучший захват сажи и оседание ее на стенках фильтра.

Как работает данный элемент? действует в несколько этапов. На первом происходит фильтрация сажи. Газы попадают в элемент, и вредные вещества оседают на стенках. Второй этап - это регенерация. Она может быть:

  • Пассивной.
  • Активной.

В первом случае вредные газы очищаются, проходя через керамический элемент. Во втором добавляется специальная жидкость - AdBlue. Обычно такая система используется на грузовиках. Она позволяет снизить токсичность выхлопов на 90 процентов. В машине имеется отдельный бак для этой жидкости, и система после поступления соответствующего сигнала впрыскивает часть AdBlue в катализатор. Так, из трубы выходит практически чистый выхлоп, содержащий безвредный для атмосферы водород.

Лямбда-зонд

Его также называют кислородным датчиком. Устанавливается возле катализатора в резьбовое соединение. Являет собой чувствительный элемент, который соприкасается с отработавшими газами.

Задача датчика - определить температуру газов и наличие в них кислорода. На основе считанных данных ЭБУ посылает сигнал на впускной коллектор. При необходимости в цилиндры впрыскивается дополнительная порция топлива. Для чего это нужно? Дело в том, что катализатор полностью работает только при условии повышенных температур (не менее 600 градусов). Если газы будут холоднее, никакой фильтрации и преобразования не произойдет. Поэтому система добавляет больше топлива, дабы температура каталитического стержня находилась в рабочем диапазоне. На расход топлива эта система практически не влияет (при условии ее исправности).

Глушитель

Это самый последний элемент в системе. Глушители бывают двух типов:

  • Стандартные.
  • Спортивные.

Первые устанавливаются на все гражданские автомобили. Конструкция такого глушителя предполагает наличие нескольких металлических перегородок. Также в корпусе имеется по которой газы направляются от одной перегородки к другой. По такой схеме производится наибольшее уменьшение уровня шума и вибраций. Заводской глушитель изготавливается из огнеупорного металла. Однако практика показывает, что срок службы его на порядок меньше, чем у спортивных. Виной тому является отсутствие никелированной поверхности и слишком тонкий металл внутренностей.

Что касается спортивных глушителей, они имеют более простую конструкцию. Это прямая труба с перфорацией, имеющая расширение в середине и заполненная стекловатой. такого типа очень большие. Как правило, на прямотоках диаметр выхлопного отверстия в полтора-два раза выше, чем у стандартных. Благодаря этому производится быстрый отвод газов и хорошая «вытяжка».

Но почему такие глушители не устанавливают на автомобили с завода (за исключением спортивных версий)? Все дело в уровне их шумливости. Как показывает практика, такие глушители практически не борются с гашением звуковых вибраций. Их задача - отвести как можно больший поток газов в максимально краткий период времени. На ходу эти глушители издают гул, а при наборе оборотов начинают «орать» еще громче. Поэтому прямотоки не подходят для повседневной комфортной езды. Хотя их конструкция более надежная и практичная, нежели у «гражданских» собратьев.

Уплотнительные элементы

Итак, мы перечислили основные составляющие выхлопной системы и их конструкцию. Однако мы не рассказали о том, как они соединяются друг с другом. Крепеж производится на болтах и хомутах. Приемная труба соединяется с выпускным коллектором и резонатором на двух прокладках. В зависимости от типа автомобиля, прокладка может изготавливаться из прессованной рифленой фольги либо сплошного металла. Дополнительно может использоваться шайба. Что касается самого глушителя, он соединяется с резонатором благодаря хомуту, внахлест. На некоторых машинах может использоваться кольцо (например, на отечественной «восьмерке»). Для лучшего уплотнения специалисты рекомендуют использовать термостойкий герметик (до 1100 градусов). Он отлично уплотняет все зазоры и не дает газам под давлением вырваться наружу раньше времени.

Неисправности системы выхлопа

Основной симптом - характерный звук отвода газов. Машина начинает «орать», в салоне появляется неприятный запах бензина или дизеля. Также автомобиль перестает нормально ехать. А если прогорела прокладка выпускного коллектора, на панели приборов загорится «Чек». Он сигнализирует о неправильной работе кислородного датчика. Наряду с этим увеличивается и расход топлива (поскольку система не может точно дозировать горючее, как раньше). Выход из ситуации - замена прокладки выпускного коллектора. Также осматривают состояние самих труб. Если они начинают гнить или имеются трещины в местах соединения, требуется ремонт системы выхлопа. Гниль вырезается болгаркой и наваривается новый лист металла. Но как показывает практика, более практичным и быстрым способом является замена устаревшего элемента на новый. Помните, что глушитель - это расходный материал. Через 2-3 года он подлежит замене. То же самое касается и других элементов, но их ресурс немного больше. Например, «штаны» прогорают после пяти лет эксплуатации.

О гофре

Система выхлопа (прямоточная в том числе) может иметь в составе и гофру. Она является дополнительным демпфирующим элементом. Благодаря ей снижается нагрузка на остальные детали системы выхлопа. Звук выхода газов становится тише. Но стоит отметить, что гофра в системе выхлопа - самый низкорасположенный элемент. Ввиду этого, владельцы часто повреждают его.

Ремонту гофра не подлежит. Ее меняют либо вваривают кусок новой трубы на ее место. Как показывает практика, уровень шума практически не увеличивается после такого ремонта. Главное - достичь максимальной герметичности в уплотнительных элементах. Ведь прогоревшая прокладка может стать серьезной причиной ухудшения ходовых характеристик автомобиля.

Заключение

Итак, мы рассмотрели устройство системы выхлопа и основные ее неисправности. Напоследок дадим небольшой совет. При удалении сажевого фильтра либо каталитического нейтрализатора стоит озаботиться удалением кислородного датчика. Если этого не сделать, мотор будет «переливать» - возрастет расход топлива и загорится ошибка на панели приборов. После (его меняют на пламегаситель) заливают новую прошивку в ЭБУ. А на место датчика устанавливают заглушку.

Система отвода отработанных газов автомобиля позволяет не только удалять продукты сгорания топлива, но и увеличить эффективность работы силового агрегата, а также значительно снизить шумовой фон. Для этого в системе используется такой узел, как глушитель, который способен подавлять шум, создаваемый выхлопными газами, и значительно снизить уровень их токсичности. Все эти показатели зависят от того, как устроен глушитель.

Независимо от того, изготавливается ли глушитель в заводских условиях, или же собирается своими руками, в его конструкции должны быть следующие обязательные элементы:

  • Выпускной коллектор сочленяется непосредственно с двигателем авто через приемную трубу, которая может быть оборудована виброкомпенсатором.
  • Отработанные газы из приемной трубы попадают в полость катализатора, в котором догорают остатки топлива, и снижается насыщенность углекислого газа.
  • Из катализатора газовые потоки устремляются в камеру резонатора, где гасятся колебания и уравновешивается воздействие их пульсации.
  • Затем объем отработанных газовых потоков проходит через камеры заднего глушителя, который призван снижать шум.

Принцип работы

Прежде чем приступить к ремонту глушителя автомобиля или его сборке своими руками, нужно понять основные принципы его работы. Если посмотреть на устройство в разрезе, то можно увидеть множество металлических или керамических перегородок, термостойкую вату, а также присутствие перфорированных труб. Наличие этих элементов в конструкции глушителя замедляет скорость движения газовых потоков. При ремонте своими руками важно заменить изношенные элементы качественными аналогами.

В свою очередь их снижение позволяет сгладить работу мотора с учетом каждого такта.

Не существует стандартов по производству выхлопной системы и отдельных ее элементов, поэтому глушители различных производителей авто могут существенно отличаться друг от друга.

Если вы решили своими руками модернизировать отдельные элементы системы отвода отработанных газов, то необходимо учитывать некоторые нюансы:

  • на мощных двигателях автомобилей должен стоять резонатор достаточно большого объема, который будет обеспечивать необходимый уровень сглаживания выхлопа;
  • количество перегородок внутри камер, которые сглаживают неравномерность объема отводимых потоков.

Типы шумопоглощающих элементов

Глушители в авто могут быть активными, которые представляют собой достаточно простое устройство, а также реактивными. В первом случае для их производства используются вибростойкие материалы, которые способны выдерживать воздействие высоких температур. Активные устройства наиболее популярны, поскольку неприхотливы в эксплуатации. Существенным их недостатком является их быстрое загрязнение. Реактивные устройства глушителей состоят из сложных элементов камер-резонаторов.

Что касается задней шумопоглощающей камеры автомобиля, то в ее устройстве присутствует множество отсеков, которые содержат в себе специальный наполнитель. Он необходим для снижения звука отводимых газов при работе двигателя авто. В устройстве современных глушителей автомобилей может использоваться несколько технологий поглощения звукового фона и очистки отделяемых газов одновременно. Они могут содержать в себе множество различных материалов, которые обеспечивают максимальное снижение звука отработанных потоков газов, уровня их токсичности и температуры.

Особенности глушителя-прямотока

Такое устройство может быть использовано для увеличения производимой мощности авто. Глушитель-прямоток использует энергию газовых потоков, которая преобразуется в мощность автомобиля. Как бы странно это ни звучало, но такое возможно: вначале из коллектора обеспечивается выпуск потоков газов с минимальным сопротивлением, а двигатель автомобиля в свою очередь затрачивает меньше усилий на преодоление силы их давления. Именно этим и достигается увеличение полезной мощности мотора авто.

При изготовлении глушителя-прямотока используется камера, внутри которой помещается перфорированная труба, а также имеется небольшое количество разделительных перегородок (при изготовлении прямотока своими руками эту важную деталь необходимо учитывать). Отработанные газы практически не испытывают сопротивления внутренних перегородок, а отверстия в трубе позволяет им максимально расширяться, после чего они выходят наружу практически бесшумно. Этому также способствует применение внешних кожухов, пропитанных специальным составом.

Самостоятельный ремонт глушителей

Основной проблемой элементов систем отвода выхлопа является появление дыр, вследствие перепада температур и внешнего ударного воздействия на корпус элементов. При обнаружении пробоины в корпусе резонатора, труб или заднего глушителя, нужно изготовить латки из листового металла. От размеров «свища» необходимо сделать запас около 10-12 мм, после чего место пробоя нужно тщательно обработать.

Ремонт своими руками особых сложностей не представляет. При наложении латок желательно пользоваться полуавтоматической сваркой. При этом необходимо следить за ровностью и непрерывностью сварного шва. Таким же образом реставрируются дефекты труб и внутренних элементов.

Устройство глушителя, несмотря на кажущуюся проделываемую им большую работу в подавлении такого сильнейшего звука работы двигателя , на самом деле достаточно простое: внутри глушителя Вы найдёте обманчиво простой набор трубок с проделанными отверстиями в них. Эти трубки наряду со специальными камерами на самом деле устроены как тонко настроенный музыкальный инструмент, который на сегодняшний день не просто глушит работу двигателя, но и создаёт особый звук, приятный для слуха многих автолюбителей, особенно, в случае применения его на спортивных автомобилях.

Глушитель в разрезе

Таким образом, глушители предназначены для отражения звуковых волн, производимых двигателем таким образом, чтобы они (волны) частично подавляли сами себя. Глушители используют достаточно тонкую технологию, чтобы подавить этот шум. Так как же устроен глушитель? Давайте разберёмся в этом! Но для начала мы должны узнать немного больше о физике звука.


Расположение глушителя в автомобиле относительно всей выхлопной системы

О звуке

Звуковые волны формируются из импульсов переменного высокого и низкого давления воздуха в цилиндрах двигателя. Эти импульсы делают свой ​​путь по воздуху со скоростью звука. Данные импульсы создаются в двигателе в то время, когда открывается выпускной клапан, и взорванная смесь топлива и воздуха под высоким вдруг выходит в систему выпуска отработавших газов. Молекулы в этом газе сталкиваются с молекулами в трубе, находящимися под более низким давлением. Они, в свою очередь, сталкиваются с молекулами далее вниз по трубе, в результате чего и создаётся такой звук. Таким образом, звуковая волна пробивается вниз по выхлопной системе (а, точнее, спереди назад) гораздо быстрее, чем из неё выходят выхлопные газы.

Когда эти импульсы давления достигают Вашего уха, то они воздействуют на барабанную перепонку, заставляя её вибрировать. А Ваш мозг интерпретирует это движение перепонки как звук. Две основные характеристики волны определяют, как мы воспринимаем такой звук:

  1. Частота звуковой волны - более высокая частота волны просто означает, что давление воздуха колеблется быстрее. Чем быстрее работает двигатель, тем более высокий тон мы слышим (давайте вспомним жужжание болидов Формулы-1 или проезжающих на высокой скорости спортивных мотоциклов). Более медленные колебания звучат более низким тоном (наиболее характерный звук создают двигатели, двигатели мотоциклов Harley Davidson на холостых или невысоких оборотах).
  2. Уровень давления воздуха - амплитуда волны определяет, насколько громким будет звук. Звуковые волны с большими амплитудами перемещения наших барабанных перепонок имеют большее давление, и мы регистрируем это ощущение как больший объём шума.

Но оказывается, что можно совместить две или более звуковые волны вместе и получить (!)меньший звук. Давайте рассмотрим, как это работает, на примере устройства глушителя!

Главной особенностью нашего восприятия звуковых волн является то, что результирующий шум в нашем ухе является фактически суммой всех звуковых волн, которые достигают барабанной перепонки в одну единицу времени. Если Вы, к примеру, слушаете какую-либо из песен Металлики, то Вы можете слышать одновременно игру на барабанной установке и на трёх гитарах в виде единой сочетающейся музыки, но если прислушаться к любой такой песне, то можно услышать несколько различных источников звука (кроме разве что отличить игру на барабанах и бас-гитаре) - волны звукового давления, достигая барабанной перепонки, складываются вместе, так что Ваша барабанная перепонка только чувствует одно давление в любой конкретный момент времени.

А теперь практическая часть устройства глушителя по части подавления звука: дело в том, что можно производить звуковую волну, которая прямо противоположна другой одинаковой ей волне, и именно это является основой для шумоподавления - две одинаковые волны попросту либо глушат друг друга, либо образуют волну с вдвое бóльшей амплитудой. Взгляните на анимацию ниже. Волна, надвигающаяся сверху и волна посередине являются чистыми одинаковыми тонами. Если эти две волны находятся в унисоне - то есть если они накладываются друг на друга с той же частотой, тогда они образуют одну волну, но с вдвое большей амплитудой. В науке это называется конструктивной интерференцией. Но, если они накладываются друг на друга в противоположных фазах, когда низшая точка амплитуды первой волны в один момент времени совпадает с высшей точкой амплитуды второй волны, то тогда они попросту подавляют друг друга вплоть до нулевого звука. И это уже называется деструктивной интерференцией. В то время когда первая волна достигает своего максимального давления, вторая волна достигает своего минимума. Если бы обе эти волны ударили барабанную перепонку в одно и то же время, то Вы бы не услышали ничего, потому что эти две волны всегда гасят друг друга.

Как устроен глушитель изнутри?

Глушитель по своей сути представляет собой набор трубок. Эти трубки предназначены для создания отражения звуковых волн, которые мешают друг другу и в конечно итоге уравновешивают друг друга.

Выхлопные газы и звуковые волны вместе с ними (хотя, как мы уже знаем, гораздо раньше) попадают в глушитель через центральную выхлопную трубу. Они отскакивают в заднюю стенку глушителя и отражаются через отверстие в основной части глушителя. Затем они проходят через ряд отверстий в другую камеру, где они снова гасятся и выходят через последнюю трубку, покидая глушитель.

Вторая камера называется резонатором , который соединён с первой камерой через отверстие. Резонатор содержит определённый объём воздуха и имеет определенную длину, которая с педантичной точностью вычисляется для получения такой длины волны, которая сможет компенсировать определённую частоту звука. Как же это происходит? Давайте окинем глушитель более пристальным взглядом...

Резонатор

Когда волна попадает в глушитель, часть её продолжает идти во вторую камеру через отверстие, а другая часть - отражается. Волна распространяется во второй камере, попадает в заднюю стенку глушителя, отражаясь от неё и снова выходит через это же отверстие. Длина этой второй камеры рассчитывается так, что эта волна покидает резонатор только после того, как следующая волна отразится от внешней стороны второй камеры (внутренней стороны первой камеры). В идеале часть звуковой волны высокого давления, которая вышла из второй камеры, будет гаситься частью волны низкого давления, которая отразилась от внешней стороны стенки второй камеры, и именно эти две волны будут уравновешивать друг друга.

Анимация ниже показывает, как резонатор работает в упрощенном варианте глушителя:

На самом деле, звук, исходящий от двигателя, представляет собой смесь различных частот звука, а, так как многие из этих частот зависят от оборотов двигателя, звук почти никогда не включается в нужные диапазоны частот, чтобы глушить его идеально. Резонатор предназначен для работы в лучшем диапазоне частот, в котором двигатель делает больше всего шума, но даже если частота другая, он все равно будет производить значительную долю деструктивной интерференции.

Некоторые автомобили, особенно роскошные, где тихая работа является ключевой особенностью, есть ещё один компонент в выхлопе, который выглядит как глушитель, но называется резонатором . Это устройство работает как и резонатор камеры в глушителе - размеры рассчитываются так, чтобы глушённые волны производили затем определённый "красивый" звук на выходе, чтобы удивлять и восхищать окружающих и, собственно, людей в салоне таких машин.

Есть и другие особенности внутри глушителя, которые помогают ему снизить уровень звука по-разному. Тело глушителя обычно делается в три слоя: два тонких слоя металла и один более толстой, немного изолированный слой между ними. Это позволяет глушителю поглощать некоторые из импульсов давления. Кроме того, впускные и выпускные трубы, идущие в главную камеру, перфорированы отверстиями. Это позволяет тысячам импульсов крошечного давления гаситься в основной камере, "поедая" друг друга в какой-то степени в дополнение к поглощению в глушителе.

Недостатки глушителя и другие типы глушителей

Одним из важных недостатков глушителя является его противодействие давлению, которое оказывает на него двигатель - эта характеристика называется обратным давлением . Из-за всех извилин и дырок в глушителе выхлоп должен пройти немалый путь, чтобы в конечном счёте выйти в окружающую атмосферу. Глушители, описанные выше, производят достаточно высокое противодавление, что отнимает немного мощности двигателя, ведь открытый клапан цилиндра позволяет выходить сгоревшему , а топливо это выходит за счёт взрыва в соседних цилиндрах, как мы помним из статьи о работе двигателя .

Есть и другие типы глушителей, которые могут уменьшить обратное давление. Один из таких типов, который иногда называют "стеклопакетом ", использует только поглощение, а не отражение, чтобы уменьшить звук. В таком глушителе выпускной патрубок напрямую соединён с впускной выхлопной трубой, которая перфорирована отверстиями. Вокруг этой трубы нанесён слой стеклянной изоляции, которая и поглощает часть импульсов давления. Изоляцию окружает стальной слой.


Устройство глушителя-"стеклопакета"

Такие глушители тоже имеют существенный недостаток: они производят гораздо меньше обратного давления, тем самым лишь незначительно "съедая" мощность авто, но они не снижают уровень звука настолько де хорошо, насколько обычные глушители.

Понравилось? Лайкни нас на Facebook