Экономия материалов при производства асинхронных двигателей. Снижение расходов при замене двигателя на энергоэффективный. Энергоэффективность электропривода. Комплексный подход

Современные трехфазные энергосберегающие двигатели позволяют существенно снизить затраты на электроэнергию благодаря более высокому коэффициенту полезного действия. Другими словами такие двигатели способны выработать большее количество механической энергии из каждого затраченного киловатта электрической энергии. Более эффективное расходование энергии достигается за счет индивидуальной компенсации реактивной мощности. При этом конструкция энергосберегающих электродвигателей отличается высокой надежностью и длительным сроком службы.


Универсальный трехфазный энергосберегающие электродвигатель Вesel 2SIE 80-2B исполнение IMB14

Применение трехфазных энергосберегающих двигателей

Использовать трехфазные энергосберегающие двигатели можно практически во всех отраслях. От обычных трехфазных двигателей они отличаются лишь малым потреблением энергии. В условиях постоянного роста цен на энергоносители энергосберегающие электродвигатели могут стать по-настоящему выгодным вариантом как для небольших производителей товаров и услуг, так и для крупных промышленных предприятий.

Деньги, потраченные на приобретение трехфазного энергосберегающего двигателя, достаточно быстро возвратятся к вам в виде экономии средств, направляемых на приобретение электричества. Наш магазин предлагает вам получить дополнительную выгоду, приобретя качественный трехфазный энергосберегающий двигатель по действительно невысокой цене. Замена устаревших морально и физически электродвигателей на новейшие высокотехнологичные энергосберегающие модели – ваш очередной шаг на новый уровень рентабельности бизнеса.

Вопрос создания энергосберегающих электродвигателей возник одновременно с изобретением самих электрических машин. На Международной электротехнической выставке 1891 г. во Франкфурте-на-Майне, Чарльз Браун (впоследствии основавший компанию ABB) показал синхронный трехфазный генератор, собственного производства, КПД которого превышал 95%. Асинхронный трехфазный двигатель, представленный Михаилом Доливо-Добровольским, показал КПД 95%. С тех пор показатели КПД трехфазного асинхронного двигателя удалось улучшить всего на один-два процента.

Наиболее остро интерес к энергосберегающим двигателям возник в конце 1970-х годов во время мире нефтяного энергетического кризиса. Оказалось, что сэкономить одну тонну условного топлива во много раз дешевле, чем добыть.Во время кризиса во много раз выросли капиталовложения в сферу энергосбережения. Во многих странах стали выделять специальные гранды на энергосберегающие программы.

После проведения анализа проблемы энергосбережения оказалось, что более половину электроэнергии, вырабатываемой в мире, расходуют электродвигатели. Потому над их совершенствованием работают все ведущие электротехнические компании в мире.

Что же такое энергосберегающие двигатели?

Это электродвигатели, КПД которых на 1–10% выше, чем у стандартных двигателей. В крупных энергосберегающих двигателях, разница в значениях КПД составляет 1–2%, а в двигателях малой и средней мощности эта разница составляет уже 7–10%.

КПД электродвигателей Siemens

Увеличение КПД в в энергосберегающих двигателях достигается за счет:

  • увеличения доли активных материалов – меди и стали;
  • использование более тонкой и высококачественной электротехнической стали;
  • применение вместо алюминия меди в роторных обмотках;
  • уменьшения воздушного зазора в статоре с помощью прецизионного технологического оборудования;
  • оптимизации формы зубцовой зоны магнитопровода и конструкции обмоток;
  • использование подшипников более высокого класса;
  • особой конструкции вентилятора;

По статистическим данным, цена всего двигателя составляет менее 2% суммарных затрат на жизненный цикл. Так, если двигатель работает 4000 часов ежегодно в течение 10 лет, то на электроэнергию приходится примерно 97% всех затрат на весь жизненный цикл. Еще около одного процента приходится на монтаж и техобслуживание. Поэтому увеличение КПД двигателя средней мощности на 2% позволит окупить увеличение стоимости энергосберегающего двигателя уже через 3 года, в зависимости от режима работы. Практический опыт и расчеты показывают, что увеличение стоимости энергосберегающего двигателя окупается за счет сэкономленной электроэнергии при эксплуатации в режиме S1 за год-полтора (при годовой наработке 7000 часов).

В общем случае переход к применению энергосберегающего двигателя позволяет:

  • увеличить КПД двигателя на 1–10%;
  • повысить надежность его работы;
  • снизить время простоев;
  • уменьшить затраты на техобслуживание;
  • увеличить устойчивость двигателя к тепловым перегрузкам;
  • повысить перегрузочную способность;
  • поднять устойчивость двигателя к ухудшению эксплуатационных условий;
  • сниженному и завышенному напряжению, искажению формы кривой напряжения, перекосу фаз и т. д.;
  • повысить коэффициент мощности;
  • уменьшить уровень шума;
  • поднять скорость двигателя за счет уменьшения скольжения;

Отрицательным свойством электродвигателей с повышенным КПД по сравнению с обычными являются:

  • на 10 – 30% выше стоимость;
  • несколько больше масса;
  • более высокая величина пускового тока.

В некоторых случаях использование энергоэффективного двигателя является нецелесообразным:

  • при эксплуатации двигателя эксплуатируется короткое время (менее 1–2 тыс.часов/год), внедрение энергоэффективного двигателя может не внести существенного вклада в энергосбережение;
  • при работе двигателя в режимах с частым запуском, так как сэкономленная электроэнергия будет израсходована на более высокое значение пускового тока;
  • при работе двигателя работает с недогрузом, за счет уменьшения КПД при работе на нагрузку ниже номинальной.

Объемы энергосбережения в результате внедрения энергоэффективного двигателя могут оказаться незначительными по сравнению с потенциалом привода с переменной скоростью.Каждый дополнительный процент КПД требует увеличения массы активных материалов на 3–6%. При этом момент инерции ротора возрастает на 20–50%. Поэтому высокоэффективные двигатели уступают обычным по динамическим показателям, если при их разработке специально не учитывается это требование.

При выборе в пользу энергоэффективного двигателя, необходимо тщательно подходить к вопросу цены. По прогнозам аналитиков медь будет дорожать значительно быстрее стали. Поэтому там, где есть возможность, применять так называемые стальные двигатели (с меньшей площадью пазов), то лучше применять их. Такие двигатели имеют меньшую стоимость за счет экономии меди. По тем же причинам необходимо относиться к энергосберегающим двигателям с постоянными магнитами. Если вам в будущем придется искать замену такого двигателя. может оказаться, что его цена будет слишком высока, а замена его на энергосберегающий двигатель общепромышленного исполнения будет затруднительна из за несоответствия габаритов. По оценкам экспертов постоянные магниты из редкоземельных материалов будут дорожать больше и быстрее, чем медь, что приведет к значительному подорожанию таких двигателей. Хотя такие двигатели при высшем классе энергоэффективности достаточно компактны, их внедрение в промышленность ограничено тем, что постоянные магниты сейчас востребованы в других отраслях, нежели общепром, и, по оценкам специалистов будут использоваться при выпуске специальной техники, на которую денег не жалеют.

В соответствии с Федеральным законом РФ "Об энергосбережении" на промышленном предприятии должны быть разработаны мероприятия по экономии электроэнергии применительно к каждой электроустановке. В первую очередь это относится к электромеханическим устройствам с электрическим приводом, основной элемент которого электродвигатель . Известно, что более половины всей производимой в мире электроэнергии потребляется электродвигателями в электроприводах рабочих машин, механизмов, транспортных средств. Поэтому меры по экономии электроэнергии в электроприводах наиболее актуальны.

Задачи энергосбережения требуют оптимального решения не только в процессе эксплуатации электрических машин, но и при их проектировании. В процессе эксплуатации двигателя значительные потери энергии наблюдаются в переходных режимах и в первую очередь при его пуске.

Потери энергии в переходных режимах могут быть заметно снижены за счет применения двигателей с меньшими значениями моментов инерции ротора, что достигается уменьшением диаметра ротора при одновременном увеличении его длины, так как мощность двигателя при этом должна оставаться неизменной. Например, так сделано в двигателях краново-металлургических серий, предназначенных для работы в повторно-кратковременном режиме, с большим числом включений в час.

Эффективным средством снижения потерь при пуске двигателей является пуск при постепенном повышении напряжения, подводимого к обмотке статора. Энергия, расходуемая при торможении двигателя, равна кинетической энергии, запасенной в движущихся частях электропривода при его пуске. Энергосберегающий эффект при торможении зависит от способа торможения. Наибольший энергосберегающий эффект происходит при генераторном рекуперативном торможении с отдачей энергии в сеть. При динамическом торможении двигатель отключается от сети, запасенная энергия рассеивается в двигателе и расхода энергии из сети не происходит.

Наибольшие потери энергии наблюдаются при торможении противовключением, когда расход электроэнергии равен трехкратному значению энергии, рассеиваемой в двигателе при динамическом торможении. При установившемся режиме работы двигателя с номинальной нагрузкой потери энергии определяются номинальным значением КПД. Но если электропривод работает с переменной нагрузкой, то в периоды спада нагрузки КПД двигателя понижается, что ведет к росту потерь. Эффективным средством энергосбережения в этом случае является снижение напряжения, подводимого к двигателю в периоды его работы с недогрузкой. Этот способ энергосбережения возможно реализовать при работе двигателя в системе с регулируемым преобразователем при наличии в нем обратной связи по току нагрузки. Сигнал обратной связи по току корректирует сигнал управления преобразователем, вызывая уменьшение напряжения, подводимого к двигателю в периоды снижения нагрузки.

Если же приводным является асинхронный двигатель, работающий при соединении обмоток статора "треугольником" , то снижение подводимого к фазным обмоткам напряжения можно легко реализовать путем переключения этих обмоток на соединение "звездой" , так как в этом случае фазное напряжение понижается в 1,73 раза. Этот метод целесообразен еще и потому, что при таком переключении повышается коэффициент мощности двигателя, что также способствует энергосбережению.

При проектировании электропривода важным является правильный выбор мощности двигателя . Так, выбор двигателя завышенной номинальной мощности ведет к снижению его технико-экономических показателей (КПД и коэффициента мощности), вызванных недогрузкой двигателя. Такое решение при выборе двигателя ведет как к росту капитальных вложений (с ростом мощности увеличивается стоимость двигателя), так и эксплуатационных расходов, поскольку с уменьшением КПД и коэффициента мощности растут потери, а, следовательно, растет непроизводительный расход электроэнергии. Применение двигателей заниженной номинальной мощности вызывает их перегрузку при эксплуатации. Вследствие этого растет температура перегрева обмоток, что способствует росту потерь и вызывает сокращение срока службы двигателя. В конечном счете возникают аварии и непредвиденные остановки электропривода и, следовательно, растут эксплуатационные расходы. В наибольшей степени это относится к двигателям постоянного тока из-за наличия у них щеточно-коллекторного узла, чувствительного к перегрузке.

Большое значение имеет рациональный выбор пускорегулирующей аппаратуры . С одной стороны, желательно, чтобы процессы пуска, торможения реверса и регулирования частоты вращения не сопровождались значительными потерями электроэнергии, так как это ведет к удорожанию эксплуатации электропривода. Но, с другой стороны, желательно, чтобы стоимость пускорегулирующих устройств не была бы чрезвычайно высокой, что привело бы к росту капитальных вложений. Обычно эти требования находятся в противоречии. Например, применение тиристорных пускорегулирующих устройств обеспечивает наиболее экономичное протекание процессов пуска и регулирования двигателя, но стоимость этих устройств пока еще остается достаточно высокой. Поэтому при решении вопроса целесообразности применения тиристорных устройств следует обратиться к графику работы проектируемого электропривода. Если электропривод не подвержен значительным регулировкам частоты вращения, частым пускам, реверсам и т.п., то повышенные затраты на тиристорное либо другое дорогостоящее оборудование могут оказаться неоправданными, а расходы, связанные с потерями энергии, - незначительными. И наоборот, при интенсивной эксплуатации электропривода в переходных режимах применение электронных пускорегулирующих устройств становится целесообразным. К тому же следует иметь в виду, что эти устройства практически не нуждаются в уходе и их технико-экономические показатели, включая надежность, достаточно высоки. Необходимо, чтобы решение по применению дорогостоящих устройств электропривода подтверждалось технико-экономическими расчетами.

Решению проблемы энергосбережения способствует применение синхронных двигателей, создающих в питающей сети реактивные токи, опережающие по фазе напряжение. В итоге сеть разгружается от реактивной (индуктивной) составляющей тока, повышается коэффициент мощности на данном участке сети, что ведет к уменьшению тока в этой сети и, как следствие, к энергосбережению. Эти же цели преследует включение в сеть синхронных компенсаторов . Примером целесообразного применения синхронных двигателей является электропривод компрессорных установок, снабжающих предприятие сжатым воздухом. Для этого электропривода характерен пуск при небольшой нагрузке на валу, продолжительный режим работы при стабильной нагрузке, отсутствие торможений и реверсов. Такой режим работы вполне соответствует свойствам синхронных двигателей.

Используя в синхронном двигателе режим перевозбуждения, можно достичь значительного энергосбережения в масштабе всего предприятия. С аналогичной целью применяют силовые конденсаторные установки ("косинусные" конденсаторы). Создавая в сети ток, опережающий по фазе напряжение, эти установки частично компенсируют индуктивные (отстающие по фазе) токи, что ведет к повышению коэффициента мощности сети, а следовательно, к энергосбережению. Наиболее эффективным является применение конденсаторных установок типа УКМ 58 с автоматическим поддержанием заданного значения коэффициента мощности и со ступенчатым изменением реактивной мощности в диапазоне от 20 до 603 квар при напряжении 400 В.

Необходимо помнить, что энергосбережение направлено на решение не только экономических, но и экологических проблем, связанных с производством электроэнергии.

Повысить мощность и существенно снизить энергопотребление сгоревших и новых асинхронных двигателей позволяет уникальная технология модернизации с применением совмещенных обмоток типа «Славянка». Сегодня ее успешно внедряют на нескольких крупных промышленных предприятиях. Такая модернизация позволяет повысить на 10-20% пусковые и минимальные моменты, понизить на 10-20% пусковой ток или повысить мощность электродвигателя на 10-15%, стабилизировать КПД близким к номинальному в широком диапазоне нагрузок, понизить ток холостого хода, снизить в 2,7-3 раза потерь в стали, уровень электромагнитных шумов и вибраций, повысить надёжность и увеличить межремонтный срок эксплуатации в 1,5 — 2 раза.

В России на долю асинхронных двигателей, по разным оценкам, приходится от 47 до 53% потребления всей вырабатываемой электроэнергии, в промышленности - в среднем 60%, в системах холодного водоснабжения - до 80%. Они осуществляют практически все технологические процессы, связанные с движением и охватывают все сферы жизнедеятельности человека. В каждой квартире можно найти асинхронных двигателей больше, чем жильцов. Ранее, поскольку задачи экономии энергоресурсов не было, при проектировании оборудования стремились «подстраховаться», и использовали двигатели с мощностью, превышающей расчетную. Экономия электроэнергии в проектировании отходила на второй план, и такое понятие как энергоэффективность не было столь актуальным. Энергоэффективные двигатели российская промышленность не проектировала и не выпускала. Переход к рыночной экономике резко изменил ситуацию. Сегодня сэкономить единицу энергетических ресурсов, например, 1 т топлива в условном исчислении, вдвое дешевле, чем её добыть.

Энергоэффективные двигатели (ЭД) — это асинхронные ЭД с короткозамкнутым ротором, в которых за счет увеличения массы активных материалов, их качества, а также за счет специальных приемов проектирования удалось поднять на 1-2% (мощные двигатели) или на 4-5% (небольшие двигатели) номинальный КПД при некотором увеличении цены двигателя.

С появлением двигателей с совмещенными обмотками «Славянка» по запатентованной схеме стало возможно существенно улучшить параметры двигателей без увеличения цены. За счет улучшенной механической характеристики и более высоких энергетических показателей, стало возможным экономить до 15% потребления энергии при той же полезной работе и создавать регулируемый привод с уникальными характеристиками, не имеющий аналогов в мире.

В отличие от стандартных, ЭД с совмещенными обмотками обладают высокой кратностью моментов, имеют КПД и коэффициент мощности близкий к номинальному в широком диапазоне нагрузок. Это позволяет повысить среднюю нагрузку на двигатель до 0,8 и повысить эксплуатационные характеристики обслуживаемого приводом оборудования.

По сравнению с известными методами повышения энергоэффективности асинхронного привода новизна технологии, применяемой петербуржцами, заключается в изменении основополагающего принципа конструкции классических обмоток двигателя. Научная новизна - в том, что сформулированы совершенно новые принципы конструирования обмоток двигателей, выбора оптимальных соотношений чисел пазов роторов и стартора. На их основе разработаны промышленные конструкции и схемы однослойных и двухслойных совмещенных обмоток, как для ручной, так и для автоматической укладки обмоток на стандартном оборудовании. На технические решения получен ряд патентов РФ.

Сущность разработки в том, что в зависимости от схемы подключения трёхфазной нагрузки к трёхфазной сети (звезда или треугольник) можно получить две системы токов, образующий между векторами угол в 30 электрических градусов. Соответственно, к трёхфазной сети можно подключить электродвигатель, имеющий не трёхфазную обмотку, а шестифазную. При этом часть обмотки должна быть включена в звезду, а часть в треугольник и результирующие вектора полюсов одноименных фаз звезды и треугольника должны образовывать между собой угол в 30 электрических градусов. Совмещение двух схем в одной обмотке позволяет улучшить форму поля в рабочем зазоре двигателя и как следствие существенно улучшить основные характеристики двигателя.

По сравнению с известными, частотно-регулируемый привод может быть выполнен на базе новых двигателей с совмещенными обмотками с повышенной частотой питающего напряжения. Это достигается за счёт меньших потерь в стали магнитопровода двигателя. В результате себестоимость такого привода получается существенно ниже, чем при использовании стандартных двигателей, в частности, значительно снижаются шумность и вибрации.

Применение данной технологии при ремонтах асинхронных двигателей позволяет за счет экономии электроэнергии окупить затраты в течение 6-8 месяцев. За последний год только Научно-производственное объединение «Санкт-Петербургская электротехническая компания» модернизировала несколько десятков сгоревших и новых асинхронных двигателей путем перемотки обмоток статора на ряде крупных предприятий Санкт-Петербурга в сфере хлебопекарной, табачной промышленностях, заводах стройматериалов и многих других. И это направление успешно развивается. Сегодня Научно-производственное объединение «Санкт-Петербургская электротехническая компания» ищет потенциальных партнеров в регионах, способных организовать совместно с петербуржцами бизнес по модернизации асинхронных электродвигателей в своей области.

Подготовила Мария Алисова.

Справка

Николай Яловега — основоположник технологии — профессор, доктор технических Наук. Оформлен патент в США в 1996 году. На сегодняшний день срок действия истек.

Дмитрий Дуюнов — разработчик методики расчета схем укладки совмещенных обмоток двигателя. Оформлен ряд патентов.

Около 60% потребляемой в промышленности электроэнергии тратится на электропривод рабочих машин. При этом основными потребителями электроэнергии являются электродвигатели переменного тока. В зависимости от структуры производства и характера технологических процессов доля энергопотребления асинхронных двигателей составляет 50…80%, синхронных двигателей 6…8%. Совокупный КПД электродвигателей составляет около 70%, поэтому уровень их энергоэффективности играет значительную роль в решении задачи энергосбережения.

В сфере разработки и производства электродвигателей с 01.06.2012 г. введен в действие национальный стандарт ГОСТ Р 54413-2011 , основанный на международном стандарте IEC 60034-30:2008 и устанавливающий четыре класса энергоэффективности двигателей: IE1 – нормальный (стандартный), IE2 – повышенный, IE3 – премиум, IE4 – супер-премиум. Стандартом предусмотрен ступенчатый переход производства на более высокие классы энергоэффективности. С января 2015 г. все выпускаемые электродвигатели мощностью 0,75…7,5 кВт должны иметь класс энергоэффектиности не ниже IE2, а 7,5…375 кВт – не ниже IE3 или IE2 (с обязательной комплектацией преобразователем частоты). С января 2017 г. все выпускаемые электродвигатели мощностью 0,75…375 кВт должны иметь класс энергоэффектиности не ниже IE3 или IE2 (допускается при работе в частотно-регулируемом приводе).

В асинхронных двигателях повышение энергоэффективности достигается :

Применением новых марок электротехнической стали с меньшими удельными потерями и меньшей толщиной листов сердечников.

Уменьшением воздушного зазора между статором и ротором и обеспечением его равномерности (способствует снижению намагничивающей составляющей тока обмотки статора, уменьшению дифференциального рассеяния и снижению электрических потерь).

Снижением электромагнитных нагрузок, т.е. увеличением массы активных материалов при уменьшении количества витков и увеличении сечения проводника обмотки (приводит к снижению сопротивлений обмоток и электрических потерь).

Оптимизацией геометрии зубцовой зоны, применением современной изоляции и пропиточного лака, новых марок обмоточного провода (увеличивает коэффициент заполнения паза медью до 0,78…0,85 вместо 0,72…0,75 в электродвигателях стандартной энергоэффективности). Приводит к снижению сопротивлений обмоток и электрических потерь.

Применением меди для изготовления короткозамкнутой обмотки ротора взамен алюминия (приводит к снижению электрического сопротивления обмотки ротора на 33% и соответствующему снижению электрических потерь).

Применением высококачественных подшипников и стабильных маловязких смазок, выносом подшипников за пределы подшипникового щита (улучшает обдув подшипников и теплоотдачу, снижает уровень шума и механические потери).

Оптимизацией конструкции и производительности вентиляционного узла с учетом меньшего нагрева электродвигателей повышенной энергоэффективности (снижает уровень шума и механические потери).

Применением более высокого класса нагревостойкости изоляции F при обеспечении перегрева по классу В (позволяет избежать переустановленной мощности в приводе с систематическими перегрузками до 15%, эксплуатировать двигатели в сетях с существенными колебаниями напряжения, а также при повышенной температуре окружающей среды без снижения нагрузки).

Учёт при проектировании возможности работы с преобразователем частоты.

Серийное производство энергоэффективных двигателей освоено такими известными фирмами как Siemens, WEG, General electric, SEW Eurodrive, ABB, Baldor, MGE-Motor, Grundfos, ATB Brook Crompton. Крупным отечественным производителем является Российский электротехнический концерн «РУСЭЛПРОМ».

Наибольшего повышения энергоэффективности удается достичь в синхронных двигателях с постоянными магнитами, что объясняется отсутствием основных потерь в роторе и использованием высокоэнергетических магнитов. В роторе, ввиду отсутствия обмотки возбуждения, выделяются только добавочные потери от высших гармонических в сердечнике ротора, постоянных магнитах и короткозамкнутой пусковой обмотке. Для изготовления постоянных магнитов ротора используется высокоэнергетический сплав на основе неодима NdFeB, магнитные параметры которого в 10 раз выше ферритовых магнитов, что обеспечивает значительное повышение КПД. Известно, что КПД большинства синхронных двигателей с постоянными магнитами соответствует классу энергоэффективности IE3 и в ряде случаев превышает IE4.

К недостаткам синхронных двигателей с постоянными магнитами относятся: снижение КПД с течением времени из-за естественной деградации постоянных магнитов и их высокая стоимость.

Срок службы постоянных магнитов составляет 15…30 лет, однако вибрации, склонность к коррозии при повышенной влажности и размагничивание при температурах 150° С и выше (в зависимости от марки) могут уменьшить его до 3...5 лет.

Крупнейшим производителем и экспортером редкоземельных металлов (РЗМ) является Китай, владеющий 48% мировых ресурсов и обеспечивающий 95% мировых потребностей. В последние годы Китай значительно ограничил экспорт РЗМ, образуя их дефицит на мировом рынке и поддерживая высокие цены. Россия владеет 20% мировых ресурсов РЗМ, однако их добыча составляет лишь 2% мировой добычи, а производство изделий из РЗМ менее 1%. Таким образом, в ближайшие годы цены на постоянные магниты будут высокими, что отразится на стоимости синхронных двигателей с постоянными магнитами.

Ведутся работы по снижению стоимости постоянных магнитов. Национальным институтом материаловедения NIMS (Япония) разработана марка постоянных магнитов на основе неодима NdFe12N с меньшим содержанием неодима (17% вместо 27% в NdFe12B), лучшими магнитными свойствами и высокой температурой размагничивания 200°С . Известны работы по созданию постоянных магнитов без редкоземельных металлов на основе железа и марганца, имеющих, лучшие характеристики, чем с редкоземельными металлами и не размагничивающиеся при высокой температуре.

Синхронные двигатели с постоянными магнитами класса энергоэффективности IE4 производят: WEG, Baldor, Marathon Electric, Nova Torque, Grundfos, SEW Eurodrive, WEM Motors, Bauer Gear Motor, Leroy Somer, Mitsubishi Electric, Hitachi, Lafert Motors, Lönne, Hiosung, Motor Generator Technology, Hannig Electro-Werke, Yaskawa.

Современные серии электродвигателей адаптированы для работы с преобразователями частоты и имеют следующие конструктивные особенности: обмоточный провод с двухслойной нагревостойкой витковой изоляцией; изоляционные материалы, рассчитанные на напряжения до 2,2 от номинального; электрическая, магнитная и геометрическая симметрия электродвигателя; изолированные подшипники и дополнительный болт заземления на корпусе; принудительная вентиляция при глубоком диапазоне регулирования; установка высокочастотных синусоидальных фильтров.

Такие широко известные на рынке производители как Grundfos, Lafert Motors, SEW Eurodrive для повышения компактности и уменьшения габаритов частотно-регулируемого привода производят электродвигатели, интегрированные с преобразователями частоты.

Стоимость энергоэффективных электродвигателей в 1,2…2 раза больше стоимости электродвигателя стандартной энергоэффективности, поэтому срок окупаемости дополнительных затрат составляет 2…3 года в зависимости от среднегодовой наработки .

Список литературы

1. ГОСТ Р 54413-2011 Машины электрические вращающиеся. Часть 30. Классы энергоэффективности односкоростных трехфазных асинхронных двигателей с короткозамкнутым ротором (код IE).

2. Сафонов А.С. Основные мероприятия по повышению энергоэффективности электрооборудования АПК // Тракторы и сельхозмашины. № 6, 2014. с. 48-51.

3. Сафонов А.С. Применение энергоэффективных электродвигателей в сельском хозяйстве // Труды II Международной научно-практической конференции «Актуальные вопросы науки и техники», выпуск II. Россия, г. Самара, 7 апреля 2015. ИЦРОН, 2015. С. 157-159.

4. Стандарт IEC 60034-30:2008 Машины электрические вращающиеся. Часть 30. Классы КПД односкоростных трехфазных асинхронных двигателей с короткозамкнутым ротором (код IE).

5. Шумов Ю.Н., Сафонов А.С. Энергоэффективные асинхронные двигатели с медной обмоткой ротора, отлитой под давлением (обзор зарубежных публикаций) // Электричество. № 8, 2014. с. 56-61.

6. Шумов Ю.Н., Сафонов А.С. Энергоэффективные электрические машины (обзор зарубежных разработок) // Электричество. № 4, 2015. с. 45-47.

Понравилось? Лайкни нас на Facebook