Что такое мехатроник дсг. Мехатроник акпп и его основные характеристики За что отвечает мехатроник

Современную жизнь невозможно представить без автомобилей, а движение в городском режиме должно происходить максимально комфортно для водителя. Удобство управления автомобилем обеспечивается при помощи различных трансмиссий (АКПП, роботизированной КПП).

Значительной популярностью пользуется роботизированная коробка из-за плавности движения и экономичного расхода топлива, наличия ручного режима, позволяющего подстроить манеру вождения под нужды водителя.

Принцип работы КПП ДСГ

DSG – механическая КПП, оснащенная автоматическим приводом для смены ступеней, и имеющая в составе две корзины сцепления.

Коробка ДСГ связана с двигателем через два сцепления, располагающихся поосно. Нечетные и задняя ступени функционируют через одно сцепление, а четные – через другое. Такое устройство обеспечивает плавную смену ступеней без снижения и прерывания мощности, осуществляя непрерывную передачу вращающего момента от мотора к ведущей оси колес.

Во время разгона на первой ступени, шестеренки второй передачи уже находятся в зацеплении. Когда блок управления передает команду смены ступеней, гидравлические приводы КПП осуществляют отпускание одного сцепления и зажим второго, производя переход вращающего момента от мотора с одной ступени на другую.

Таким образом, процесс происходит до крайней ступени. При снижении скорости и изменении других условий процедура осуществляется в обратном порядке. Смена ступеней происходит с помощью синхронизаторов.

Смена ступеней в коробке ДСГ осуществляется с высокой скоростью, недоступной даже профессиональным гонщикам.

Что такое мехатроник в АКПП

Управление обоими сцеплениями и сменой ступеней происходит при помощи блока управления, состоящего из гидравлического и электронного узлов, датчиков. Этот блок называется Мехатроник и располагается в картере КПП.

Датчики встроенные в Мехатроник, осуществляют контроль состояния КПП и отслеживают работу основных деталей и узлов.

Параметры, контролируемые датчиками Мехатроника:

  • количество оборотов на входе и выходе коробки;
  • давление масла;
  • уровень масла;
  • температура рабочей жидкости;
  • расположение вилок включения ступеней.

На последних моделях коробок ДСГ устанавливается ЕСТ (электронная система, управляющая сменой ступеней).

Помимо вышеперечисленных параметров ЕСТ контролирует:

  • скорость транспортного средства;
  • степень открытия дросселя;
  • температуру мотора.

Считывание этих параметров продляет срок службы КПП и двигателя.

Виды трансмиссии прямого переключения

В настоящий момент существует две разновидности коробок ДСГ:

  • шестиступенчатая (DSG-6);
  • семиступенчатая (DSG-7).

DSG 6

Первой преселективной (роботизированной) КПП являлась шестиступенчатая DSG, которая была разработана в 2003г.

Конструкция DSG-6:

  • два сцепления;
  • два ряда ступеней;
  • картер;
  • Мехатроник;
  • дифференциал КПП;
  • главная передача.

В DSG-6 используется два сцепления мокрого типа, которые неизменно находятся в трансмиссионной жидкости, обеспечивающей смазывание механизмов и охлаждение дисков сцепления, тем самым продляя эксплуатационный период КПП.

Два сцепления передают вращающий момент на ряды ступеней коробки. Ведущий диск КПП соединяется с муфтами маховиком специальной ступицы, объединяющей ступени.

Основные компоненты Мехатроника (электрогидравлического модуля), расположенного в корпусе КПП:

  • золотники распределения КПП;
  • мультиплексор, вырабатывающий управляющие команды;
  • электромагнитные и регулировочные клапана КПП.

При изменении положения селектора включаются распределители КПП. Ступени изменяются при помощи электромагнитных клапанов, а корректирование положения фрикционных муфт происходит при помощи клапанов давления. Эти клапаны являются «сердцем» КПП, а Мехатроник – «мозгом».

Мультиплексор КПП осуществляет управление гидравлическими цилиндрами, которых в такой КПП 8 штук, но одновременно функционирует не более 4-х клапанов КПП. В различных режимах КПП работают разные цилиндры, в зависимости от необходимой ступени.

Передачи в DSG-6 сменяются циклически. Одновременно задействованы два ряда ступеней, только один из них не используется – находится в режиме ожидания. При изменении передаточного момента сразу задействуется второй ряд, переходя в активный режим. Такой механизм функционирования КПП обеспечивает смену передач менее чем за доли секунды, движение транспорта при этом происходит плавно и равномерно, без медлительности и рывков.

DSG-6 является более мощной роботизированной КПП. Крутящий момент мотора автомобиля с такой КПП порядка 350 Нм. Весит такая коробка под 100 килограмм. Трансмиссионного масла для DSG-6 требуется более 6 литров.

На данный момент DSG-6 в основном устанавливается на следующие транспортные средства:

  • Seat (Alhambra, Toledo);
  • Skoda (Octavia, SuperB);
  • Audi (TT, Q3, А3);

Коробки ДСГ оснащаются Типтроником, осуществляющим перевод коробки в режим ручного управления.

DSG 7

DSG-7 была разработана в 2006 году специально для автомобилей эконом-класса. Коробка DSG весит 70-75 кг. и содержит объем масла менее 2-х литров. Данная КПП устанавливается на бюджетные машины с крутящим моментом двигателя не более 250 Нм.

На сегодняшний момент DSG-7 в основном устанавливается на следующие автомобили:

  • Audi (TT, Q3, А3);
  • Seat (Leon, Ibiza, Altea);
  • Skoda (Octavia, Fabia, SuperB);
  • Volkswagen (Tiguan, Golf, Jetta, Passat).

Основным отличием ДСГ-7 от ДСГ-6 является присутствие 2-х сухих дисков сцепления, не находящихся в трансмиссионной жидкости. Такие изменения позволили уменьшить расход топлива, снизить стоимость сервисного обслуживания.

Достоинства и недостатки роботизированной АКПП

Роботизированная КПП имеет свои достоинства и недостатки в сравнении с другими трансмиссиями.

Достоинства коробки ДСГ:

  • уменьшенный расход топливной смеси (до 10-20%);
  • возможность ручного управления, похожее на ;
  • отсутствие потери мощности при смене ступеней;
  • плавность движения автомобиля;
  • высокие динамические характеристики автомобиля, оснащенного коробки ДСГ;
  • уменьшение времени, необходимого для разгона;
  • возможность автоматического и ручного выбора передач;
  • комфортное управление автомобилем, оснащенного такой КПП;
  • отсутствие педали сцепления и привычный рычаг селектора, что не вызывает сложностей при переходе с автомобиля с классической ;

Недостатки коробки ДСГ:

  • высокая стоимость автомобиля с ДСГ по сравнению с машинами, оборудованными другими видами трансмиссий;
  • эпизодически робот подтормаживает и не успевает за динамичным разгоном автомобиля, осуществляя смены ступеней с небольшой задержкой;
  • мехатроник является одним из слабых мест в коробке ДСГ, периодически возникает неисправности в этом блоке;
  • при возникновении неисправности в мехатронике требуется его замена, так как он не подлежит ремонту;
  • уменьшенный ресурс КПП;
  • неисправности мехатроника способствуют частые перепады температур, что особенно актуально в зимнее время;
  • срок службы ДСГ-7 и ее компонентов заметно меньше, чем в ДСГ-6;
  • повышенный нагрев коробки из-за непрерывной активности преселектора;
  • увеличение стоимости обслуживания роботизированной КПП;
  • сложность ремонта роботизированной коробки, который могут осуществить не многие СТО;
  • не устанавливается на внедорожники и другие мощные автомобили;
  • дороговизна ремонта, в некоторых случаях приходится полностью менять DSG.
  • своевременное техническое обслуживание КПП ДСГ (замена трансмиссионной жидкости по регламенту – не более 60000 километров, устранение неисправностей);
  • прогревание роботизированной КПП путем кратковременного нахождения автомобиля после запуска в стоящем положении;
  • плавность движения после прогрева на протяжении 1-5 километров с момента начала движения;
  • избегание пробуксовывания колес;
  • при остановках более 1 минуты рекомендуется переводить селектор коробки ДСГ в режим нейтрали;
  • при вождении по снегу и льду рекомендовано включение режима «снежинка», при его наличии;
  • при динамичной езде и быстрых разгонах желательно переводить рычаг селектора в положение «спорт»;
  • при прохождении каждого технического обслуживания необходимо проводить диагностику коробки ДСГ и производить инициализацию;
  • педаль акселератора необходимо выжимать плавно, даже на ручном режиме;
  • разгон желательно осуществлять в ручном режиме, а плавную езду и торможение – в автоматическом;
  • постановка автомобиля с коробки ДСГ на стоянку в положении селектора «нейтраль» с обязательным включением стояночного тормоза (ручника).

Роботизированная коробка является, по сути, усовершенствованной МКПП, переключение ступеней в которой происходит при помощи мехатроника на основании различных параметров, считываемых датчиками. При соблюдении определенных рекомендаций можно существенно продлить срок службы роботизированной коробки.



Мехатроника

Мехатроника - это название для частных случаев построения электрических приводов (см. электрический привод), где основной упор делается на обеспечение требуемого движения, прежде всего, высокоточного, а не на его энергетические характеристики. Для мехатроники характерно стремление к полной интеграции механики, электрических машин, силовой электроники, микропроцессорной техники и программного обеспечения.

О термине

Термин состоит из двух частей - «меха», от слова механика, и «троника», от слова электроника. Сначала данный термин был торговой маркой (зарегистрирована в 1972 году), но после его широкого распространения компания отказалась от его использования в качестве зарегистрированного торгового знака.

Из Японии мехатроника распространилась по всему миру. Из иностранных изданий термин "мехатроника" попал в Россию и стал широкоизвестен.

Сейчас под мехатроникой понимают системы электропривода с исполнительными органами относительно небольшой мощности, обеспечивающие прецизионные движения и имеющие развитую систему управления. Сам термин "мехатроника" используется, прежде всего, для отделения от общепромышленных систем электропривода и подчеркивания особых требований к мехатронным системам. Именно в таком смысле мехатроника как область техники известна в мире.

Связанные понятия

Стандартное определение (1995):

Мехатронный модуль - это функционально и конструктивно самостоятельное изделие для реализации движений с взаимопроникновением и синергетической аппаратно-программной интеграцией составляющих его элементов, имеющих различную физическую природу.

К элементам различной физической природы относят механические, электротехнические, электронные, цифровые, пневматические, гидравлические, информационные и т. д. компоненты.

Мехатронная система - совокупность нескольких мехатронных модулей и узлов, синергетически связанных между собой, для выполнения конкретной функциональной задачи.

Обычно мехатронная система является объединением собственно электромеханических компонентов с силовой электроникой, которые управляются с помощью различных микроконтроллеров , ПК или других вычислительных устройств. При этом система в истинно мехатронном подходе, несмотря на использование стандартных компонентов, строится как можно более монолитно, конструкторы стараются объединить все части системы воедино без использования лишних интерфейсов между модулями. В частности, применяя встроенные непосредственно в микроконтроллеры АЦП , интеллектуальные силовые преобразователи и т. п. Это уменьшает массу и размеры системы, повышает ее надёжность и дает некоторые другие преимущества. Любая система, управляющая группой приводов может считаться мехатронной.

Иногда система содержит принципиально новые с конструкторской точки зрения узлы, такие как электромагнитные подвесы, заменяющие обычные подшипниковые узлы . К сожалению, такие подвесы дороги и сложны в управлении и в нашей стране применяются редко (на г.). Одной из областей применения электромагнитных подвесов являются турбины, перекачивающие газ по трубопроводам. Обычные подшипники здесь плохи тем, что в смазку проникают газы - она теряет свои свойства.

Мехатроника сегодня

Многие современные системы являются мехатронными или используют элементы мехатроники, поэтому постепенно мехатроника становится «наукой обо всём». Мехатроника применяется во многих отраслях и направлениях, например: робототехника , автомобильная, авиационная и космическая техника , медицинское и спортивное оборудование, бытовая техника .

Примеры мехатронных систем

Типичная мехатронная система - тормозная система автомобиля с АБС (антиблокировочной системой).

Персональный компьютер также является мехатронной системой: ЭВМ содержит много мехатронных составляющих: жёсткие диски, оптические приводы.

См. также

Литература

  • Мехатроника: Пер с япон. / Исии Х., Иноуэ Х., Симояма И. и др. - М.: Мир, 1988. - С. 318. - ISBN 5-03-000059-3
  • Подураев Ю. В. Мехатроника. Основы, методы, применение. - 2-е изд., перераб и доп. - М.: Машиностроение, 2007. - 256 с. - ISBN 978-5-217-03388-1
  • Введение в мехатронику: В 2-х кн. Учебное пособие / А. К. Тугенгольд, И. В. Богуславский, Е. А. Лукьянов и др. Под ред. А. К. Тугенгольда. - Ростов н/Д : Издательский центр ДГТУ, 2004. - ISBN 5-7890-0294-3
  • Карнаухов Н. Ф. Электромеханические и мехатронные системы. - Ростов н/Д : Феникс, 2006. - 320 с. - (Высшее образование). - 3000 экз. - ISBN 5-222-08228-8
  • Егоров О. Д., Подураев Ю. В. Конструирование мехатронных модулей. - М.: Издательство МГТУ «Станкин», 2004. - 368 с.

Ссылки

  • «Теоретические и практические проблемы развития мехатроники»

Wikimedia Foundation . 2010 .

  • Грозозащита
  • Гесс, Виктор Франц

Смотреть что такое "Мехатроника" в других словарях:

    Мехатроника - область науки и техники, основанная на системном объединении узлов точной механики, датчиков состояния внешней среды и самого объекта, источников энергии, исполнительных механизмов, усилителей, вычислительных устройств (ЭВМ и микропроцессоры).… … Официальная терминология

    мехатроника - [Интент] Тематики роботы промышленные EN mechatronics … Справочник технического переводчика

    мехатроника - mechatronika statusas T sritis automatika atitikmenys: angl. mechatronics vok. Mechatronik, f rus. мехатроника, f pranc. mécatronique, f … Automatikos terminų žodynas

    Лукьянов, Евгений Анатольевич - В Википедии есть статьи о других людях с фамилией Лукьянов. Евгений Анатольевич Лукьянов Дата рождения: 1958 год(1958) Место рождения: Ростов на Дону Страна … Википедия

    Тугенгольд, Андрей Кириллович - Андрей Кириллович Тугенгольд Дата рождения: 1937 год(1937) Место рождения: Москва Страна … Википедия

    Уральский государственный университет путей сообщения - У этого термина существуют и другие значения, см. Уральский государственный университет (значения). Уральский государственный университет путей сообщения (УрГУПС) … Википедия

    МИРЭА

    Московский государственный институт радиотехники, электроники и автоматики (технический университет) (МИРЭА) Девиз Лучший среди равных равный среди лучших! Optimus inter pares par inter optimos! Год основания … Википедия

    Московский государственный технический университет радиотехники, электроники и автоматики - Московский государственный институт радиотехники, электроники и автоматики (технический университет) (МИРЭА) Девиз Лучший среди равных равный среди лучших! Optimus inter pares par inter optimos! Год основания … Википедия

    Московский государственный институт радиотехники, электроники и автоматики (технический университет) (МИРЭА) Девиз Лучший среди равных равный среди лучших! Optimus inter pares par inter optimos! Год основания … Википедия

Технологии не стоят на месте. В автомобилестроении это можно наблюдать особенно ярко. Однако не все новое сразу получается хорошо и принимается на ура. Речь о знаменитой коробке DSG, роботизированной коробке, которая, появившись, вызвала много шума на авторынке. Одни восхищались ее непревзойденными характеристиками на дороге, а других удручали бесконечные поломки. Именно последние расшифровали DSG по-русски: «Два сцепления в год». Нужно признаться, что первые модели были действительно неудачны и часто ломались. Как говорится, дыма без огня не бывает. Но инженеры не сидели, сложа руки, и результат на лицо: с 2014 года появилась новая 7-ступенчатая коробка передач DQ200 . Именно она ставится сейчас на большинство современных автомобилей, хотя поломки случаются и с ней.

DSG 7. Принцип работы.
ДСГ 7 – это коробка передач, оснащенная двумя «сухими» сцеплениями. Одно отвечает за четные передачи, другое – за нечетные. Когда первое сцепление работает, второе отдыхает, ожидая своей очереди. Хотя «отдыхает», это не значит, что оно выключено. Оно находится всегда наготове.
При торможении или разгоне в дело вступает то одно, то другое сцепление. Именно их правильное взаимодействие друг с другом обеспечивает синхронное переключение скоростей, без дерганья и провалов. А за это взаимодействие отвечает «мозг коробки» - мехатроник. Эта штука решает все: она не только переключает передачи, но и выбирает тот момент, когда это необходимо сделать. Нужно сказать, что мехатроник работает на опережение. Например, пока на колеса передается крутящий момент одной передачи, мехатроник уже включает другую. Именно такой механизм работы обеспечивает мягкость переключения передач, которое проходит незаметно для водителя. Он получает лишь результат: ускорение или торможение. Если DSG 7 0АМ исправно, то переход от одной передачи к другой происходит настолько быстро, что человеку конкурировать с DSG по скорости переключения фактически невозможно. А вот если мехатроник неисправен, то начинаются рывки, провалы, толчки и другие неприятности.

Поломки мехатроника.
Если мехатроник неисправен, то для водителя это не останется незамеченным.

  • Один из сигналов – удары при переключении. Если это началось, то можно не сомневаться, что «беда постучалась» в Вашу КПП.
  • Дальше хуже. Иногда может не включаться одна из передач: первая или последняя, что уже может сказываться на безопасности движения автомобиля.
  • Еще один симптом: Вы отпускаете тормоз, а машина не едет. Нужно нажимать на газ.
  • При сломанном мехатронике разгон происходит с рывками. Согласитесь, что при обгоне это уже совсем неприятно.
    Во всех этих случаях требуется замена мехатроника .

Почему мехатроник ломается.
В народе говорят: «ДСГ не ломается, ломается мехатроник.» К сожалению, действительно это одна из основных причин выхода из строя роботизированной коробки. Почему жизнь мехатроника коротка, разбирались долго. Наконец, виноватый был найден – это масло в коробке. Однако эта версия до сих пор вызывает сомнения. Но есть и другая. Замыкание в коробке ДСГ. Ведь гидронасос работает все время, а давление велико. Масло вытекает, и рабочее давление в мехатронике падает, что приводит к его полной поломке.

Что мы предлагаем
Мехатроник очень сложен в ремонте, и в большинстве случаев ремонтировать его просто невыгодно. Это долго и трудоемко, а ведь исправная машина в современной жизни нужна каждый день. Мучительное ожидание, наверняка, не то, что Вам нужно, и мы понимаем это.
Техцентр «САТОН» предлагает оптимальное решение возникшей проблемы. Как только диагностика подтвердит, что мехатроник неисправен, мы сможем достаточно быстро вернуть Вашу DSG 7 к жизни, поставив восстановленный мехатроник, который будет функционировать как новый.
При этом Вы экономите не только свое время, но и деньги. Цена за восстановленный мехатроник: 38 000 руб. Далеко не всегда ремонт укладывается в данную сумму. Кроме того, цена включает в себя доставку в Ставрополь, монтаж и демонтаж, прошивку и адаптацию мехатроника к автомобилю клиента. Вы можете не сомневаться в качестве нового «мозга» Вашей роботизированной коробки, ведь Вы получаете гарантию на 6 месяцев или на 10 000 км. Для справки: гарантия на новый мехатроник такая же, но цена нового составляет порядка 80000 рублей.
Единственное условие – Вы оставляете старый неисправный мехатроник нам. Да он Вам в принципе уже и не нужен, так как машина отлично поедет без него.
Вы, конечно, могли бы купить новый мехатроник, но это будет значительно дороже, а восстановление или ремонт мехатроника позволяет относительно недорого, а главное быстро снова сесть за руль исправной машины.

Для уточнения возможности замены или ремонта Вашего мехатроника позвоните по номеру 8 962 024 25 26.

], область науки и техники, основанная на синергетическом объединении узлов точной механики с электронными, электротехническими и компьютерными компонентами, обеспечивающая проектирование и производство качественно новых модулей, систем и машин с интеллектуальным управлением их функциональными движениями. Термин «Мехатроника» (англ. «Mechatronics», нем. «Mechatronik») был введён японской фирмой « Yaskawa Electric Corp. » в 1969 году и зарегистрирован как торговая марка в 1972 году. Отметим, что в отечественной технической литературе ещё в 1950-х гг. использовался подобным же образом образованный термин – «механотроны» (электронные лампы с подвижными электродами, которые применялись в качестве датчиков вибраций и т. п.). Мехатронные технологии включают проектно-конструкторские, производственные, информационные и организационно-экономические процессы, которые обеспечивают полный жизненный цикл мехатронных изделий.

Предмет и метод мехатроники

Главная задача мехатроники как направления современной науки и техники состоит в создании конкурентоспособных систем управления движением разнообразных механических объектов и интеллектуальных машин, которые обладают качественно новыми функциями и свойствами. Метод мехатроники заключается (при построении мехатронных систем) в системной интеграции и использовании знаний из ранее обособленных научных и инженерных областей. К их числу относятся прецизионная механика, электротехника, гидравлика, пневматика, информатика, микроэлектроника и компьютерное управление. Мехатронные системы строятся путём синергетической интеграции конструктивных модулей, технологий, энергетических и информационных процессов, начиная со стадии их проектирования и заканчивая производством и эксплуатацией.

В 1970–80-х гг. три базисных направления – оси мехатроники (точная механика, электроника и информатика) интегрировались попарно, образовав три гибридных направления (на рис. 1 показаны боковыми гранями пирамиды). Это электромеханика (объединение механических узлов с электротехническими изделиями и электронными блоками), компьютерные системы управления (аппаратно–программное объединение электронных и управляющих устройств), а также системы автоматизированного проектирования (САПР) механических систем. Затем – уже на стыке гибридных направлений – возникает мехатроника, становление которой как нового научно-технического направления начинается с 1990-х гг.

Элементы мехатронных модулей и машин имеют различную физическую природу (механические преобразователи движений, двигатели, информационные и электронные блоки, управляющие устройства), что определяет междисциплинарную научно-техническую проблематику мехатроники. Междисциплинарные задачи определяют и содержание образовательных программ по подготовке и повышению квалификации специалистов, которые ориентированы на системную интеграцию устройств и процессов в мехатронных системах.

Принципы построения и тенденции развития

Развитие мехатроники является приоритетным направлением современной науки и техники во всём мире. В нашей стране мехатронные технологии как основа построения роботов нового поколения включены в число критических технологий РФ.

К числу актуальных требований к мехатронным модулям и системам нового поколения следует отнести: выполнение качественно новых служебных и функциональных задач; интеллектуальное поведение в изменяющихся и неопределённых внешних средах на основе новых методов управления сложными системами; сверхвысокие скорости для достижения нового уровня производительности технологических комплексов; высокоточные движения с целью реализации новых прецизионных технологий, вплоть до микро- и нанотехнологий; компактность и миниатюризация конструкций на основе применения микромашин; повышение эффективности многокоординатных мехатронных систем на базе новых кинематических структур и конструктивных компоновок.

Построение мехатронных модулей и систем основывается на принципах параллельного проектирования (англ. – concurrent engineering), исключения многоступенчатых преобразований энергии и информации, конструктивного объединения механических узлов с цифровыми электронными блоками и управляющими контроллерами в единые модули.

Ключевым принципом проектирования является переход от сложных механических устройств к комбинированным решениям, основанным на тесном взаимодействии более простых механических элементов с электронными, компьютерными, информационными и интеллектуальными компонентами и технологиями. Компьютерные и интеллектуальные устройства придают мехатронной системе гибкость, поскольку их легко перепрограммировать под новую задачу, и они способны оптимизировать свойства системы при изменяющихся и неопределённых факторах, действующих со стороны внешней среды. Важно отметить, что за последние годы цена таких устройств постоянно снижается при одновременном расширении их функциональных возможностей.

Тенденции развития мехатроники связаны с появлением новых фундаментальных подходов и инженерных методов решения задач технической и технологической интеграции устройств различной физической природы. Компоновка нового поколения сложных мехатронных систем формируется из интеллектуальных модулей («кубиков мехатроники»), объединяющих в одном корпусе исполнительные и интеллектуальные элементы. Управление движением систем осуществляется с помощью информационных сред для поддержки решений мехатронных задач и специального программного обеспечения, реализующего методы компьютерного и интеллектуального управления.

Классификация мехатронных модулей по структурным признакам представлена на рис. 2.

Модуль движения – конструктивно и функционально самостоятельный электромеханический узел, включающий в себя механическую и электрическую (электротехническую) части, который можно использовать как сепаратный блок, так и в различных комбинациях с другими модулями. Главным отличием модуля движения от общепромышленного электропривода является использование вала двигателя в качестве одного из элементов механического преобразователя движения. Примерами модулей движения являются мотор-редуктор, мотор-колесо , мотор-барабан, электрошпиндель станка.

Мотор-редукторы являются исторически первыми по принципу своего построения мехатронными модулями, которые стали серийно выпускать, и до настоящего времени находят широкое применение в приводах различных машин и механизмов. В мотор-редукторе вал является конструктивно единым элементом для двигателя и преобразователя движения, что позволяет исключить традиционную соединительную муфту, добиваясь таким образом компактности; при этом существенно уменьшается количество присоединительных деталей, а также затраты на установку, отладку и запуск. В мотор-редукторах в качестве электродвигателей наиболее часто используют асинхронные двигатели с короткозамкнутым ротором и регулируемым преобразователем частоты вращения вала, однофазные двигатели и двигатели постоянного тока. В качестве преобразователей движения применяются зубчатые цилиндрические и конические, червячные, планетарные, волновые и винтовые передачи. Для защиты от действия внезапных перегрузок устанавливают ограничители вращающего момента.

Мехатронный модуль движения – конструктивно и функционально самостоятельное изделие, включающее в себя управляемый двигатель, механическое и информационное устройства (рис. 2). Как следует из данного определения, по сравнению с модулем движения, в состав мехатронного модуля движения дополнительно встроено информационное устройство. Информационное устройство включает датчики сигналов обратных связей, а также электронные блоки для обработки сигналов. Примерами таких датчиков могут служить фотоимпульсные датчики (энкодеры), оптические линейки, вращающиеся трансформаторы, датчики сил и моментов и т. д.

Важным этапом развития мехатронных модулей движения стали разработки модулей типа «двигатель-рабочий орган». Такие конструктивные модули имеют особое значение для технологических мехатронных систем, целью движения которых является реализация целенаправленного воздействия рабочего органа на объект работ. Мехатронные модули движения типа «двигатель-рабочий орган» широко применяют в станках под названием мотор-шпиндели.

Интеллектуальный мехатронный модуль (ИММ) – конструктивно и функционально самостоятельное изделие, построенное путём синергетической интеграции двигательной, механической, информационной, электронной и управляющей частей.

Таким образом, по сравнению с мехатронными модулями движения, в конструкцию ИММ дополнительно встраиваются управляющие и силовые электронные устройства, что придаёт этим модулям интеллектуальные свойства (рис. 2). К группе таких устройств можно отнести цифровые вычислительные устройства (микропроцессоры, сигнальные процессоры и т. п.), электронные силовые преобразователи, устройства сопряжения и связи.

Применение интеллектуальных мехатронных модулей даёт мехатронным системам и комплексам ряд принципиальных преимуществ: способность ИММ выполнять сложные движения самостоятельно, без обращения к верхнему уровню управления, что повышает автономность модулей, гибкость и живучесть мехатронных систем, работающих в изменяющихся и неопределённых условиях внешней среды; упрощение коммуникаций между модулями и центральным устройством управления (вплоть до перехода к беспроводным коммуникациям), что позволяет добиваться повышенной помехозащищённости мехатронной системы и ее способности к быстрой реконфигурации; повышение надёжности и безопасности мехатронных систем благодаря компьютерной диагностике неисправностей и автоматической защите в аварийных и нештатных режимах работы; создание на основе ИММ распределённых систем управления с применением сетевых методов, аппаратно-программных платформ на базе персональных компьютеров и соответствующего программного обеспечения; использование современных методов теории управления (адаптивных, интеллектуальных, оптимальных) непосредственно на исполнительном уровне, что существенно повышает качество процессов управления в конкретных реализациях; интеллектуализация силовых преобразователей, входящих в состав ИММ, для реализации непосредственно в мехатронном модуле интеллектуальных функций по управлению движением, защите модуля в аварийных режимах и диагностики неисправностей; интеллектуализация сенсоров для мехатронных модулей позволяет добиться более высокой точности измерения, программным путём обеспечив в самом сенсорном модуле фильтрацию шумов, калибровку, линеаризацию характеристик вход/выход, компенсацию перекрёстных связей, гистерезиса и дрейфа нуля.

Мехатронные системы

Мехатронные системы и модули вошли как в профессиональную деятельность, так и в повседневную жизнь современного человека. Сегодня они находят широкое применение в самых различных областях: автомобилестроение (автоматические коробки передач, антиблокировочные устройства тормозов, приводные модули «мотор-колесо», системы автоматической парковки); промышленная и сервисная робототехника (мобильные, медицинские, домашние и другие роботы); периферийные устройства компьютеров и офисная техника: принтеры, сканеры, CD-дисководы, копировальные и факсимильные аппараты; производственное, технологическое и измерительное оборудование; домашняя бытовая техника: стиральные, швейные, посудомоечные машины и автономные пылесосы; медицинские системы (например, оборудование для робото-ассистированной хирургии, коляски и протезы для инвалидов) и спортивные тренажёры; авиационная, космическая и военная техника; микросистемы для медицины и биотехнологии; лифтовое и складское оборудование, автоматические двери в отелях аэропортах, вагонах метро и поездов; транспортные устройства (электромобили, электровелосипеды, инвалидные коляски); фото- и видеотехника (проигрыватели видеодисков, устройства фокусировки видеокамер); движущиеся устройства для шоу-индустрии.

Выбор кинематической структуры является важнейшей задачей при концептуальном проектировании машин нового поколения. Эффективность её решения во многом определяет главные технические характеристики системы, её динамические, скоростные и точностные параметры.

Именно мехатроника дала новые идеи и методы для проектирования движущихся систем с качественно новыми свойствами. Эффективным примером такого решения стало создание машин с параллельной кинематикой (МПК) (рис. 3).

В основе их конструктивной схемы лежит обычно платформа Гью-Стюарта (разновидность параллельного манипулятора, имеющая 6 степеней свободы; используется октаэдральная компоновка стоек). Машина состоит из неподвижного основания и подвижной платформы, которые соединены между собой несколькими стержнями с управляемой длиной. Стержни соединены с основанием и платформой кинематическими парами, которые имеют соответственно две и три степени подвижности. На подвижной платформе устанавливается рабочий орган (например, инструментальная или измерительная головка). Программно регулируя длины стержней с помощью приводов линейного перемещения, можно управлять перемещениями и ориентацией подвижной платформы и рабочего органа в пространстве. Для универсальных машин, где требуется перемещение рабочего органа как твёрдого тела по шести степеням свободы, необходимо иметь шесть стержней. В мировой литературе такие машины называются «гексаподы» (от греч. ἔ ξ – шесть).

Основными преимуществами машин с параллельной кинематикой являются: высокая точность исполнения движений; высокие скорости и ускорения рабочего органа; отсутствие традиционных направляющих и станины (в качестве несущих элементов конструкции используются приводные механизмы), отсюда и улучшенные массогабаритные параметры, и низкая материалоёмкость; высокая степень унификации мехатронных узлов, обеспечивающая технологичность изготовления и сборки машины и конструктивную гибкость.

Повышенные точностные показатели МПК обусловлены следующими ключевыми факторами:

в гексаподах, в отличие от кинематических схем с последовательной цепью звеньев, не происходит суперпозиции (наложения) погрешностей позиционирования звеньев при переходе от базы к рабочему органу;

стержневые механизмы обладают высокой жесткостью, так как стержни не подвержены изгибающим моментам и работают только на растяжение-сжатие;

применяются прецизионные датчики обратной связи и измерительные системы (например, лазерные), а также используются компьютерные методы коррекции перемещений рабочего органа.

Благодаря повышенной точности МПК могут применяться не только как обрабатывающее оборудование, но и в качестве измерительных машин. Высокая жёсткость МПК позволяет применять их на силовых технологических операциях. Так, на рис. 4 показан пример гексапода, выполняющего гибочные операции в составе технологического комплекса «HexaBend» для производства сложных профилей и труб.

Компьютерное и интеллектуальное управление в мехатронике

Применение ЭВМ и микроконтроллеров, реализующих компьютерное управление движением разнообразных объектов, является характерной особенностью мехатронных устройств и систем. Сигналы от разнообразных датчиков, несущие информацию о состоянии компонентов мехатронной системы и приложенных к этой системе воздействий, поступают в управляющую ЭВМ. Компьютер перерабатывает информацию в соответствии с заложенными в него алгоритмами цифрового управления и формирует управляющие воздействия на исполнительные элементы системы.

Компьютеру отводится ведущая роль в мехатронной системе, поскольку компьютерное управление даёт возможность достичь высокой точности и производительности, реализовать сложные и эффективные алгоритмы управления, учитывающие нелинейные характеристики объектов управления, изменения их параметров и влияние внешних факторов. Благодаря этому мехатронные системы приобретают новые качества при увеличении долговечности и снижении размеров, массы и стоимости таких систем. Достижение нового, более высокого уровня качества систем благодаря возможности реализации высокоэффективных и сложных законов компьютерного управления позволяет говорить о мехатронике как о возникающей компьютерной парадигме современного развития технической кибернетики.

Характерным примером мехатронной системы с компьютерным управлением является прецизионный следящий привод на основе бесконтактной многофазной электрической машины переменного тока с векторным управлением. Наличие группы датчиков, в том числе высокоточного датчика положения вала двигателя, цифровых методов обработки информации, компьютерной реализации законов управления, преобразований, основанных на использовании математической модели электрической машины, и быстродействующего контроллера позволяет построить прецизионный быстродействующий привод, обладающий сроком службы до 30–50 тысяч часов и более.

Компьютерное управление оказывается весьма эффективным при построении многокоординатных нелинейных мехатронных систем. В этом случае ЭВМ анализирует данные о состоянии всех компонентов и внешних воздействиях, производит вычисления и формирует управляющие воздействия на исполнительные компоненты системы с учётом особенностей её математической модели. В результате достигается высокое качество управления согласованным многокоординатным движением, например, рабочего органа мехатронной технологической машины или мобильного робота.

Особую роль в мехатронике играет интеллектуальное управление, которое является более высокой ступенью развития компьютерного управления и реализует различные технологии искусственного интеллекта. Они дают возможность мехатронной системе воспроизводить в той или иной мере интеллектуальные способности человека и на этой основе принимать решения о рациональных действиях для достижения цели управления. Наиболее эффективными технологиями интеллектуального управления в мехатронике являются технологии нечёткой логики, искусственных нейронных сетей и экспертных систем.

Применение интеллектуального управления даёт возможность обеспечить высокую эффективность функционирования мехатронных систем при отсутствии подробной математической модели объекта управления, при действии различных неопределённых факторов и при опасности возникновения непредвиденных ситуаций в работе системы.

Преимущество интеллектуального управления мехатронными системами состоит и в том, что часто для построения таких систем не требуются их подробная математическая модель и знание законов изменения действующих на них внешних воздействий, а управление строится на основе опыта действий высококвалифицированных специалистов-экспертов.

Представляя собой электронно-гидравлический блок, мехатроник является неотъемлемой частью современной преселективной коробки. Этот прибор располагается непосредственно в картере КПП и справедливо считается самым важным узлом трансмиссии.

Устройство блока

Мехатроник имеет довольно сложную конструкцию, объединяющую в себе:

  • Электронный блок управления;
  • Электрогидравлические компоненты (исполнительные механизмы);
  • Входные датчики.

Только при исправном состоянии всех этих элементов возможна бесперебойная работа модуля. Задачей датчиков является сбор данных, таких как показатели температуры масла, уровня давления, а также частоты вращения на выходе/входе КПП. Электронный блок управления выполняет анализ полученных сведений, и в соответствии с заложенной программой, координирует электрогидравлический блок. Последний, в свою очередь, адаптирует гидравлический контур согласно поступившим с ЭБУ командам.

Mechatronic: функции

Без преувеличения можно сказать, что мехатроник полностью управляет коробкой передач. Собирая сигналы со всех систем автомобиля, прибор выбирает момент переключения передач и полностью регулирует выполнение этого процесса. Кроме того, он контролирует работу фрикционной муфты и выступает связующим звеном с другими блоками управления.

Так, в случае поломки mechatronic, порой машина попросту не сможет сдвинуться с места.
Однако, даже если сбой кажется несерьезным, следует временно отказаться от активной эксплуатации авто и посетить специалистов. Сбои в работе модуля могут привести к размыканию сцеплений во время движения, а также стать причиной серьезной поломки. Не откладывайте ремонт и записывайтесь на визит в нашу мастерскую ‒ профессиональное обслуживание и адекватные расценки позволят Вам забыть о любых неисправностях.

Понравилось? Лайкни нас на Facebook